cho a,b,c > 0 thỏa mãn a + b + c + abc = 4
Tìm GTNN của biểu thức P = \(a^3+b^3+c^3\)
cho a,b,c>0 thỏa mãn \(2\left(b^2+bc+c^2\right)=3\left(3-a^2\right)\). tìm GTNN của biểu thức \(T=a+b+c+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
Ta có: \(2\left(b^2+bc+c^2\right)=2b^2+2c^2+2bc\le2b^2+2c^2+b^2+c^2=3\left(b^2+c^2\right)\Rightarrow b^2+c^2\le3-a^2\Rightarrow a^2+b^2+c^2\le3\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\).
Áp dụng bđt Schwars ta có:
\(T\ge a+b+c+\dfrac{18}{a+b+c}=\left(a+b+c+\dfrac{9}{a+b+c}\right)+\dfrac{9}{a+b+c}\ge2\sqrt{9}+\dfrac{9}{3}=9\).
Đẳng thức xảy ra khi a = b = c = 1.
cho 3 số a,b,c thỏa mãn a+b+c=2 .Tìm GTNN của biểu thức A=a^2+b^2+c^2
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(A=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{2^2}{3}=\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)
Vậy .............
Ta dễ có BĐT sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Khi đó \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{4}{3}\)
Đẳng thức xảy ra tại a=b=c=2/3
Cho a, b, c > 0 thỏa mãn a + \(\sqrt{ab}+\sqrt[3]{abc}=\dfrac{4}{3}\)
Tìm GTNN của A = a + b + c
\(\dfrac{4}{3}=a+2\sqrt{\dfrac{a}{4}.b}+\dfrac{1}{2}\sqrt[3]{\dfrac{a}{2}.2b.8c}\)
\(\dfrac{4}{3}\le a+\dfrac{a}{4}+b+\dfrac{1}{6}\left(\dfrac{a}{2}+2b+8c\right)=\dfrac{4}{3}\left(a+b+c\right)\)
\(\Rightarrow a+b+c\ge1\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)
cho các số a,b,c thỏa mãn \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)
tìm GTNN của biểu thức
\(A=a^3+b^3+c^3-3abc+3ab-3c+5\)
Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)
\(\Leftrightarrow\)\(a\left(a-b\right)-b\left(a-b+c-a\right)+c\left(c-a\right)=0\)
\(\Leftrightarrow\)\(a\left(a-b\right)-b\left(a-b\right)-b\left(c-a\right)+c\left(c-a\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(c-a\right)\left(c-b\right)=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\\left(c-a\right)\left(c-b\right)=0\end{cases}}\)
\(\Leftrightarrow\)\(a=b=c\)
Thế a = b = c vào A ta được:
\(A=3^3-3a^3+3a^2-3a+5\)
\(A=3\left(a^2-a+\frac{5}{3}\right)\)
\(A=3\left[\left(a-\frac{1}{2}\right)^2+\frac{17}{12}\right]\)
\(A=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)
Vậy GTNN của A là 17/4 khi a = b = c = 1/2
Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)
<=> \(a^2+b^2+c^2-ac-bc-ab=0\Leftrightarrow2a^2+2b^2+2c^2-2ac-2bc-2ab=0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
<=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
<=> \(\left(a-b\right)^2=0,\left(b-c\right)^2=0,\left(a-c\right)^2=0\)
<=> a=b=c
Thế vào ta có biểu thức:
A=\(3a^3-3a^3+3a^2-3a+5=3\left(a^2-a+\frac{5}{3}\right)=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
Giá trị nhỏ nhất của biểu thức A=17/4
Dấu bằng xảy ra khi a=b=c=1/2
Cho 3 số thực dương a,b,c thỏa mãn a+2b+3c ≥ 20.
Tìm GTNN của biểu thức A=a+b+c+3/a+9/2b+4/c
\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
cho a,b,c là số thực dương thỏa mãn a+b+c=3. tìm GTNN của biểu thức P=a/b+b/c+c/a+3abc/ab+bc+ca
Cho a;b;c là 3 cạnh tam giác thỏa mãn \(2c+b=abc\) . Tìm GTNN của biểu thức
\(A=\frac{3}{-a+b+c}+\frac{4}{a-b+c}+\frac{5}{a+b-c}\)
làm lại dong cuối:\(A\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)
Mà:\(2c+b=abc\Rightarrow a=\frac{2c+b}{cb}=\frac{2}{b}+\frac{1}{c}\)
\(\Rightarrow2a=\frac{4}{b}+\frac{2}{c}\)
\(\Rightarrow A\ge2a+\frac{6}{a}\)
Ta có:\(A=\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}\right)+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)
\(+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)
\(\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{c}\) (Do a,b,c là 3 cạnh của tam giác nên:\(\hept{\begin{cases}a+b-c>0\\a+c-b>0\\c+b-a>0\end{cases}}\)
\(=\frac{6}{a}+2a\ge4\sqrt{3}\left(cosi\right)\left(a>0\right)\)
Dấu = xảy ra khi:
\(a=b=c=\sqrt{3}\)
xin lỗi các bạn đáp án là\(2\sqrt{3}\)
Cho a,b,c là các số thực thỏa mãn a≥1,b≥2,c≥3a≥1,b≥2,c≥3 và a+b+c=9.
Tìm GTNN của biểu thức P=\(\sqrt{a-1}+\sqrt{b-2}+\sqrt{c-3}\)
cho a,b>0 thỏa mãn a*b=4
tìm GTNN của P=\(\dfrac{1}{1+a}\)+\(\dfrac{1}{1+b}\)
hỏi P đạt GTNN khi nào
Ta có: \(\left(a+b\right)^2\ge4ab=16\Rightarrow a+b\ge4\Rightarrow a+b-4\ge0\)
\(P=\dfrac{1+b+1+a}{\left(1+a\right)\left(1+b\right)}=\dfrac{a+b+2}{ab+a+b+1}=\dfrac{a+b+2}{a+b+5}\)
\(P=\dfrac{3a+3b+6}{3\left(a+b+5\right)}=\dfrac{2\left(a+b+5\right)+\left(a+b-4\right)}{3\left(a+b+5\right)}\ge\dfrac{2\left(a+b+5\right)}{3\left(a+b+5\right)}=\dfrac{2}{3}\)
\(P_{min}=\dfrac{2}{3}\) khi \(a=b=2\)