Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Trần Hà Trang
Xem chi tiết
Khánh Ngọc
31 tháng 7 2020 lúc 16:18

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)

\(\Rightarrow dpcm\)

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)

\(\Rightarrow dpcm\)

c.d làm tương tự

Khách vãng lai đã xóa
Quỳnh
31 tháng 7 2020 lúc 16:24

Bài làm

a) Biến đổi vế trái, ta được:

\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5-y^5=VP\left(đpcm\right)\)

b) Biến đổi vế trái, ta có:

\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5+y^5=VP\left(đpcm\right)\)

c) Biến đổi vế trái, ta có: 

\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)

\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)

\(=a^4-b^4=VP\left(đpcm\right)\)

d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

Biến đổi vế trái, ta có:

\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)

\(=a^3+b^3=VP\left(đpcm\right)\)

Khách vãng lai đã xóa
Nguyễn Thái Sơn
31 tháng 7 2020 lúc 16:27

c)

VT=(a+b)(a3-a2b+ab2-b3)=a4-a3b+a2b2-ab3+a3b-a2b2+ab3-b4 =a4-b4=VP

=> Đpcm

d) VT=(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3 khác VT

=> đẳng thức ko đúng

Khách vãng lai đã xóa
kobietten
Xem chi tiết
Nguyễn Kim Hưng
10 tháng 8 2019 lúc 15:11

a)\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=x^5-y^5+\left(x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(\Rightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

b)\(\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(=a^3+b^3+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)

\(\Rightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

Ngẫu Hứng
10 tháng 8 2019 lúc 15:20

a) (x - y)(x4 + x3y + x2y2 + xy3 + y4)

= x(x4 + x3y + x2y2 + xy3 + y4) - y(x4 + x3y + x2y2 + xy3 + y4)

= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5

= x5 - y5

b) (a + b)(a2 - ab + b2)

= a(a2 - ab + b2) + b(a2 - ab + b2)

= a3 - a2b + ab2 + a2b - ab2 + b3

= a3 + b3

Ngọc Hiếu Cao
Xem chi tiết
Thái Hưng Mai Thanh
Xem chi tiết
kodo sinichi
1 tháng 8 2023 lúc 18:26

ta có :

`x^2 = 4`

`=> x = 2 ;-2`

TH1 :

thay `x=2 ; y = 5` ta có :

`2(3.5 -1) = 2.14 = 28`

TH2 :

thay `x= -2 , y = 5` ta có:

`(-2)(3.5-1) = (-2).14 = -28`

`b)`

ta có : `y^2 =1 `

`=> y = 1 ; -1;`

TH1:

thay `x=5 ; y=1` vào ta có:

`(5-3)(1-4)`

`=2.(-3)`

`=-6`

TH2:

thay `x = 5 ; y = -1` vào ta có :

`(5-3)(-1-4) `

`= 2 . (-5)`

`= -10`

Nhật Văn
1 tháng 8 2023 lúc 18:15

a. \(x^2=4\\ \Leftrightarrow x=\sqrt{4}=2\)

Thay \(x=2;y=5\) vào ta được:

\(2\left(3\cdot5-1\right)\)

\(30-2=28\)

b. \(y^2=1\\ \Leftrightarrow y=\sqrt{1}=1\)

Thay \(x=5;y=1\) vào ta được:

\(\left(5-3\right)\left(1-4\right)\)

\(1\cdot\left(-3\right)=-3\)

Thao Nguyen
Xem chi tiết
Trần Thiên Kim
9 tháng 7 2017 lúc 12:20

2. CMR:

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)

Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)

=> đpcm.

c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)

=> đpcm.

Trần Thiên Kim
9 tháng 7 2017 lúc 12:26

1.

b. \(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)=3\left(x-1\right)\left(x+2\right)\)

\(\Leftrightarrow4\left(x^2+5x-x-5\right)-\left(x^2+5x+2x+10\right)=3\left(x^2+2x-x-2\right)\)

\(\Leftrightarrow4x^2+20x-4x-20-x^2-5x-2x-10=3x^2+6x-3x-6\)

\(\Leftrightarrow4x^2+20x-4x-x^2-5x-2x-3x^2-6x+3x=20+10-6\)

\(\Leftrightarrow6x=24\)

\(\Leftrightarrow x=4\)

Vậy ....

๖ۣۜĐặng♥๖ۣۜQuý
9 tháng 7 2017 lúc 13:18

\(a\text{)}.\: \left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow8x-5x^2+16-10x+4x^2-4x-8+2x^2-8=0\\ \Leftrightarrow x^2-6x=0\Leftrightarrow x\left(x-6\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

trần gia bảo
Xem chi tiết
Trần Văn Thanh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 9 2017 lúc 13:04

Ta có : VP = \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

Vp\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) = VT

Vậy  \(x^4-y^4\) \(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) (đpcm)

nguyen la nguyen
Xem chi tiết
Nguyễn Quỳnh Nga
16 tháng 1 2018 lúc 21:05

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

Nguyễn Quỳnh Nga
16 tháng 1 2018 lúc 20:58

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

Nguyễn Quỳnh Nga
16 tháng 1 2018 lúc 21:04

2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)