Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng tố uyên
Xem chi tiết
Nguyễn Linh Chi
26 tháng 4 2020 lúc 21:37

Ta có: \(x^2+y^2+z^2+t^2-xy-xz-xt\ge0\)(1)

<=> \(2x^2+2y^2+2z^2+2t^2-2xy-2xz-2xt\ge0\)

<=> \(\left(x^2+y^2+z^2-2xy-2xz+2yz\right)+\left(y^2+z^2-2yz\right)+\left(x^2-2xt+t^2\right)+t^2\ge0\)

<=> \(\left(x-y-z\right)^2+\left(y-z\right)^2+\left(x-t\right)^2+t^2\ge0\)đúng 

=> (1) đúng 

Dấu "=" xảy ra <=> x = y = z = 0

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 4 2020 lúc 23:25

Ta có: \(x^2+y^2+z^2+t^2\ge x\left(y+z+t\right)\)

<=> \(x^2+y^2+z^2+t^2-x\left(y+z+t\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+t^2-xy-xz-xt\ge0\)

\(\Leftrightarrow\left(\frac{x^2}{4}-xy+y^2\right)+\left(\frac{x^2}{4}-xz+z^2\right)+\left(\frac{x^2}{4}-xt+t^2\right)+\frac{x^2}{4}\ge0\)

\(\Leftrightarrow\left(\frac{x}{2}-y\right)^2+\left(\frac{x}{2}-z\right)^2+\left(\frac{x}{2}-t\right)^2\ge0\)(BĐT đúng)

Vậy có: \(x^2+y^2+z^2+t^2\ge x\left(y+z+t\right)\)

Đẳng thức xảy ra <=> \(\left(\frac{x}{2}-y\right)^2=\left(\frac{x}{2}-z\right)^2=\left(\frac{x}{2}-t\right)^2=\frac{x^2}{4}=0\)

\(\Leftrightarrow\frac{x}{2}-y=\frac{x}{2}-z=\frac{x}{2}-t=x=0\)

<=> x=y=z=t=0

Khách vãng lai đã xóa
Vũ Thảo Thảo
Xem chi tiết
Vũ Thảo Thảo
14 tháng 1 2019 lúc 10:07

ai biết làm giúp với

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
KCLH Kedokatoji
9 tháng 9 2020 lúc 22:00

Động não tí đi Quỳnh, a thấy bài này cũng không khó.

Khách vãng lai đã xóa
Khanh Nguyễn Ngọc
9 tháng 9 2020 lúc 22:10

Bài dễ mừ, có phải Croatia thật ko vậy :))  (viết đề bị nhầm, là x,y,z dương chứ :))

Áp dụng Cauchy-Schwarz dạng cộng mẫu số:

\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)

\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)

Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)

\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)

Dấu bằng xảy ra khi và chỉ khi x=y=z,  Xong! :))

Khách vãng lai đã xóa
Lê Thị Thu Hà
Xem chi tiết
Rồng Đom Đóm
19 tháng 10 2018 lúc 21:16

\(4x^2+y^2+z^2+t^2\ge2x\left(y+z+t\right)\)

\(\Leftrightarrow4x^2+y^2+z^2+t^2-2xy-2xz-2xt\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(x^2-2xt+t^2\right)+x^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x-t\right)^2+x^2\ge0\)(đúng)

=>đpcm

"="<=>x=y=z=t=0

Lê Thị Thu Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2022 lúc 15:05

\(\Leftrightarrow4x^2+y^2+z^2+t^2-2xy+2xz-2xt>=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(x^2-2xt+t^2\right)+x^2>=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+z\right)^2+\left(x-t\right)^2+x^2>=0\)(luôn đúng)

Phùng Gia Bảo
Xem chi tiết
Kanzaki Mizuki
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Lightning Farron
1 tháng 8 2017 lúc 22:16

a)Áp dụng BĐT AM-GM ta có:

\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)

\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)

Xảy ra khi \(x=y\)

b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)

Đúng với AM-GM 4 số

Xảy ra khi \(x=y=z=t\)

Tạ Duy Phương
Xem chi tiết