Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh Nguyễn
Xem chi tiết
ILoveMath
7 tháng 11 2021 lúc 15:28

mik tưởng 2x2 chứ

Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 15:30

\(A=\left[\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1\right]+\left(y^2+2y+1\right)+2008\\ A=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\\ A_{min}=2008\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

Phạm Nam Khôi
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 22:38

a: Ta có: \(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=10

Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Nguyễn Phúc Thiện
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2022 lúc 22:26

\(D=x^2-2xy+y^2+x^2+4y^2+5=\left(x-y\right)^2+x^2+4y^2+5\ge5\forall x,y\)

Dấu '=' xảy ra khi x=y=0

Cíu iem
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 10 2021 lúc 8:28

\(a,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow\dfrac{-x^4+2x^2-3x+5}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^4+x^3-x^3+x^2+x^2-x-2x+2+3}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^3\left(x-1\right)-x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)+3}{x-1}\in Z\\ \Leftrightarrow-x^3-x^2+x-2+\dfrac{3}{x-1}\in Z\\ \Leftrightarrow3⋮x-1\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\\ Mà.x< 0\\ \Leftrightarrow x=-2\\ b,B=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y\right)^2+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y-2\right)^2+4y^2-2024\ge-2024\\ B_{min}=-2024\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:28

\(M=\dfrac{1}{2}\left(4x^2+y^2+1-4xy+4x-2y\right)+\dfrac{9}{2}y^2+3y-\dfrac{1}{2}\)

\(M=\dfrac{1}{2}\left(2x-y+1\right)^2+\dfrac{9}{2}\left(y+\dfrac{1}{3}\right)^2-1\ge-1\)

\(M_{min}=-1\) khi \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Hồ Minh Trường
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 15:26

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+4\\ A=\left(x-y\right)^2+\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\Leftrightarrow x=y=1\)

Giang Thần
Xem chi tiết
Hày Cưi
11 tháng 11 2018 lúc 21:35

\(A=x^2-4x-1\)

\(=x^2-4x+4-5\)

\(=\left(x-2\right)^2-5\) \(\ge-5\)

Dấu = xảy ra <=> x-2=0 <=> x=2