Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chú Lùn
Xem chi tiết
Lyzimi
30 tháng 7 2015 lúc 17:51

 vào đây http://olm.vn/hoi-dap/question/149832.html

Nguyễn Bá Hùng
Xem chi tiết
Pham Van Hung
7 tháng 10 2018 lúc 16:52

      \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+18\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)-16\)

\(=\left(x^2+10x+20\right)^2-16+16=\left(x^2+10x+20\right)^2\)

Chúc bạn học tốt.

★Čүċℓøρş★
23 tháng 10 2019 lúc 10:04

      \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)


\(\Rightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+6\right)\left(x+8\right)\right]+16\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(\Rightarrow\left(x^2+10x+16\right)\left[\left(x^2+10x+16\right)+8\right]+16\)

\(\Rightarrow\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+4^2\)

\(\Rightarrow\left(x^2+10x+20\right)^2\)

Khách vãng lai đã xóa
Phạm Bích Ngọc
Xem chi tiết
Võ Đông Anh Tuấn
2 tháng 8 2016 lúc 8:59

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)

\(=\left(x^2+10x+16+4\right)^2\)

\(=\left(x^2+10+20\right)^2\)

 

Nguyễn Hải Anh Jmg
2 tháng 8 2016 lúc 12:16

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right) \left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
 

Nguyễn Thảo Nguyên
Xem chi tiết
Lê Tài Bảo Châu
24 tháng 9 2019 lúc 22:18

\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)

\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)

\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1) 

Đặt \(x^2-10x+20=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+16\)

\(=t^2-16+16\)

\(=t^2\)Thay \(t=x^2-10x+20\)ta được :

\(\left(x^2-10x+20\right)^2\)

\(=\left(x^2-2.5.x+25-25+20\right)^2\)

\(=\left[\left(x-5\right)^2-5\right]^2\)

\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)

Buddy
Xem chi tiết
HT.Phong (9A5)
23 tháng 7 2023 lúc 15:38

\(S=x^6-8\)

\(S=\left(x^2\right)^3-2^3\)

\(S=\left(x^2-2\right)\left(x^4+2x^2+4\right)\)

⇒ Chọn C

@DanHee
23 tháng 7 2023 lúc 15:38

\(=\left(x^2\right)^3-2^3=\left(x^2-2\right)\left(x^4+2x^2+4\right)\\ =>C\)

Ngoc Linh
Xem chi tiết
Toru
13 tháng 12 2023 lúc 21:19

\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)

Toru
13 tháng 12 2023 lúc 19:19

Sao đề là phân tích mà lại "= 0" vậy bạn?

Hermione Granger
Xem chi tiết
Toru
6 tháng 12 2023 lúc 20:39

\(5x(2x+3)+6x+9\\=5x(2x+3)+3(2x+3)\\=(2x+3)(5x+3)\)

Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 20:40

a: \(5x\left(2x+3\right)+6x+9\)

\(=5x\left(2x+3\right)+\left(6x+9\right)\)

\(=5x\left(2x+3\right)+3\left(2x+3\right)\)

\(=\left(2x+3\right)\left(5x+3\right)\)

b: \(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+4\right)\left(3x+48+5\right)\)

=(x+4)(3x+53)

 

Mai Thanh
Xem chi tiết
Lê Ng Hải Anh
2 tháng 8 2018 lúc 10:13

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)

=.= hok tốt!!

Nguyễn Quang Trung
Xem chi tiết
Trần Ái Linh
10 tháng 7 2021 lúc 21:52

`(x+3)^4+(x+5)^4-2`

`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`

`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`

`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`

`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`

`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`

`=(x+4)(2x^3+24x^2+108x+176)`

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 22:46

\(\left(x+3\right)^4+\left(x+5\right)^4-2\)

\(=\left[\left(x+3\right)^4-1\right]+\left[\left(x+5\right)^4-1\right]\)

\(=\left[\left(x^2+6x+9-1\right)\left(x^2+6x+9+1\right)\right]+\left[\left(x^2+10x+25-1\right)\left(x^2+10x+25+1\right)\right]\)

\(=\left(x^2+6x+8\right)\left(x^2+6x+10\right)+\left(x^2+10x+24\right)\left(x^2+10x+26\right)\)

\(=\left(x+2\right)\left(x+4\right)\left(x^2+6x+10\right)+\left(x+4\right)\left(x+6\right)\left(x^2+10x+26\right)\)

\(=\left(x+4\right)\left[\left(x+2\right)\left(x^2+6x+10\right)+\left(x+6\right)\left(x^2+10x+26\right)\right]\)

\(=\left(x+4\right)\left(x^3+6x^2+10x+2x^2+12x+20+x^3+10x^2+26x+6x^2+60x+156\right)\)

\(=\left(x+4\right)\left(2x^3+24x^2+108x+176\right)\)

\(=2\left(x+4\right)\left(x^3+12x^2+54x+88\right)\)