Cho\(A=\frac{n+2}{n-5}\)n thuộc Z và n khác 5 tìm x để A là số nguyên
cho A=\(\frac{n+2}{n-5}\)(n thuộc Z và n khác 5) Tìm X để A thuộc Z
để A thuộc Z
=>n+2 chia hết n-5
=>n-5+7 chia hết n-5
=>7 chia hết n-5
=>n-5 thuộc {1,-1,7,-7}
=>n thuộc {6,4,12,-2}
mk nhanh nhất nhé
Ta có \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n\cdot5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\Rightarrow\frac{7}{n-5}\in Z\) \(\Rightarrow\) 7 chia hết cho n-5
\(\Rightarrow\left(n-5\right)\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
n-5 | -7 | -1 | 1 | 7 |
n | -2 | 4 | 6 | 12 |
TM | TM | TM | TM |
Vậy để A thuộc Z thì \(x\in\left\{-2;4;6;12\right\}\)
cho A=\(\frac{n-5}{n+1}\) ( n thuộc z, n khác 1)
a. tìm n để A là số nguyên
b. tìm n để A tối giản
\(A=\frac{n-5}{n+1}\in Z\)
\(\Rightarrow n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\inƯ\left(6\right)\)
\(\Rightarrow n-1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
Theo mình là :
\(\frac{n-5}{n+1}=\frac{n-6+1}{n+1}=\frac{-6}{n+1}\)
=> n + 1 \(\in\) Ư (-6) = {1;-1;2;-2;3;-3;6;-6}
=> n = { 0;-2;1;-3;2;-4;5;-7}
Mà n \(\ne\) 1 => n \(\in\) {0;-2;-3;2;-4;5;-7}
a. Để A là số nguyên=> n = {0;-3;2;-4;5;-7}
b Để A là tổi giản => n = -2
Cho A =\(\frac{n+2}{n-5}\) (N thuộc Z; n khác 5) Tìm x để A thuộc Z
Đề bài có chút sai xót nha bn, phải là tìm n để A thuộc Z
Để A nguyên thì n + 2 chia hết cho n - 5
=> n - 5 + 7 chia hết cho n - 5
Do n - 5 chia hết cho n - 5 => 7 chia hết cho n - 5
=> \(n-5\in\left\{1;-1;7;-7\right\}\)
=> \(n\in\left\{6;4;12;-2\right\}\)
Ta có: \(A=\frac{n+2}{n-5}=\frac{\left(n-5\right)+7}{n-5}=1+\frac{7}{n-5}\)
Để A nguyên thì 7 chia hết n - 5
=> n - 5 thuộc Ư(7) = {-1;1-;7;7}
=> n = {4;6;-2;12}
Cho A = \(\frac{n+2}{n-5}\) ( n thuộc Z ; n khác 5 ) . Tìm x để A thuộc Z
Ta có : \(\dfrac{n+2}{n-5}=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}=1+\dfrac{7}{n-5}\)
Mà A thuộc Z =>\(1+\dfrac{7}{n-5}\in Z=>\dfrac{7}{n-5}\in Z\)
=>\(7⋮\left(n-5\right)=>\left(n-5\right)\inƯ\left(7\right)=\left(1;-1;7;-7\right)\)
=>\(\left\{{}\begin{matrix}n-5=1=>n=6\\n-5=-1=>n=-4\\n-5=7=>n=12\\n-5=-7=>n=-2\end{matrix}\right.\)
Vậy n=-4;-2;6;12 là nghiệm của phương trình trên
A = \(\dfrac{n+2}{n-5}\) = \(\dfrac{n-5+7}{n-5}\) = 1 + \(\dfrac{7}{n-5}\)
=> Để A thuộc z thì n - 5 thuộc Ư(7)
=> n - 5 thuộc { 1 ; -1 ; 7 ; -7
Ta có bảng sau :
n - 5 = 1 ; -1 ; 7 ; -7
n = 6 ; 4 ; 12 ; -2
Vậy để n thuộc { 6 ; 4 ; 12 ; -2 } thì A THUỘC z
Cho phân số \(A=\frac{n-5}{n+1}\) (n thuộc Z, n khác -1)
a, Tìm n để A có trị là số nguyên
b, Tìm n để A là phân sô tôi giản
a. Để A có giá trị của số nguyên thì:
n-5 chia hết cho n+1
<=> n+1-6 chia hết cho n+1
<=> 6 chia hết cho n+1 (vì n+1 chia hết cho n+1)
Hay n+1 thuộc ước của 6 ={1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
\(A=\frac{n-5}{n+1}\) | -5(lấy) | 7(lấy) | -2(lấy) | -4(lấy) | -1(lấy) | 3(lấy) | 0(lấy) | 2(lấy) |
Vậy n thuộc{0;-2;1;-3;2;-4;5;-7}
b.Ta có:
\(A=\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)
=> \(A=\frac{n-5}{n+1}\)tối giản <=> \(\frac{6}{n+1}\) tối giản
<=> 6 và n+1 có ước chung là 1
Vì 6 chia hết cho 2;3 và 6 nên n+1 không chia hết cho 2;3 và 6.
Vì n+1 không chia hết cho 3 nên n+1 khác 3.k(k thuộc N*)=> n khác 3.k-1
Vì n+1 không chia hết cho 2 nên n+1 khác 2.m(m thuộc N*)=> n khác 2.m-1
Mà 2x3=6 nên n khác 2.m-1 và 3.k-1 thì A là phân số tối giản.
Vậy n khác 2.m-1 và 3.k-1 thì A là phân số tối giản.
Chúc bạn học tốt nhé!
ột số kí hiệu mình k biết được mong bạn thông cảm nhé!
Bài 1
a) Cho C=\(\frac{n}{n-2}\) ( n ϵ Z ; n khác 2)
Tìm tất cả các số nguyên n để C là số nguyên
b) Cho D\(\frac{n}{n+13}\) ( n ϵ Z ; n khác -13) ( và cũng hỏi như ở câu a)
Bài 2
a) Cho E = \(\frac{3n+5}{n+7}\) ( n ϵ Z ; n khác -7) Tìm n ϵ Z để E là số nguyên
b) Cho F = \(\frac{2n+9}{n-5}\) ( n ϵ Z ; n khác 5) Tìm n ϵ Z để F là số nguyên
Bài 3
a) Cho G = \(\frac{n+10}{2n-8}\) ( n khác 4) Tìm số tự nhiên n để G là số nguyên
b) Cho H = \(\frac{n-1}{3n-6}\) ( n khác 2) Tìm n ϵ Z để H là số nguyên
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Câu 2:
1)Tìm số nguyên tố P sao cho các số P+2 và P+10 là số nguyên tố
2)Tìm giá trị nguyên dương nhỏ hơn 10 của x và y sao cho 3x-4y= -21
3)Cho phân số :A=n-5/n+1 (n thuộc Z;n khác -1)
a)Tìm n để A là số nguyên.
b)Tìm n để A tối giản.
Cho A= \(\frac{n+2}{n-5}\) (n thuộc Z, n khác 5).Tìm x để A thuộc Z
để A thuộc Z =>n+2 chia hết cho n-5
=>n-5+7 chia hết cho n-5
=>7 chia hết cho n-5
=>n-5 thuộc Ư (7)={1,7,-1,-7}
*)n-5=1=>n=6
n-5=-1=>n=-4
n-5=7=>n=12
n-5=-7=>n=-2
vậy n=-2,-4,6,12
Để A thuộc Z suy ra n+2 chia hết cho 2
suy ra n-5+7 chia hết cho n-5
n-5 thuộc U(7)={1;7;-1;-7}
TH1:n-5=1 suy ra n=6
TH2:n-5=-1 suy ra n=-4
TH3:n-5=7 suy ra n=12
TH4:n-5=-7 suy ra n=-2
Vậy n thuộc {6;-4;12;-2} thì n thuộc Z
Để A thuộc Z
\(\Rightarrow n+2⋮n-5\)
\(\Rightarrow n-5+7⋮n-5\)
Vì \(n-5⋮n-5\)
\(\Rightarrow7⋮n-5\)
\(\Rightarrow n-5\inƯ\left(7\right)=\left(1;-1;7;-7\right)\)
\(\Rightarrow n\in\left(6;4;12;-2\right)\)
1. Tìm tất cả các phân số = phân số 34/51 và có mẫu là số tự nhiên ngỏ hơn 16
2. Cho A= 5/n-4
a, Tìm n thuộc Z để A là phân số
b, tìm n thuộc z để a là số nguyên
3. Cho B=x-2/x+51
a, tìm x thuộc z để b là phân số
b, tìm x thuộc z để b là số nguyên