Tim x €Z bt
1.|x|<3
2. (x-3)(x-5)<0
bt1) TIM X,Y,Z biet:
a) x/y = 3/4 ; y/z = 5/7 va 2x + 3y - z = 186
b) 2x = 3y = 5z va /x+y-z/ = 95
Bt1 tìm x, y, z biết
a, X/3=Y/4= Z/5 và x+2y+4z =-93
b, X/3=Y/4=Z/5 Và -2x+ y - 3z=34
a) Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+2y+4z}{3+8+20}=\frac{-93}{31}=-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=-3\\\frac{y}{4}=-3\\\frac{z}{5}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-9\\y=-12\\z=-15\end{matrix}\right.\)
Vậy...
b) Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{-2x+y-3z}{-6+4-15}=\frac{34}{-17}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=-2\\\frac{y}{4}=-2\\\frac{z}{5}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-8\\z=-10\end{matrix}\right.\)
Vậy...
a,\(\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\\x+2y+4z=-93\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{4}\\\frac{x}{3}=\frac{z}{5}\\x+2y+4z=--93\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}4x-3y=0\\5x-3z=0\\x+2y+4z=-93\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{3}{4}y\left(1\right)\\5x-3z=0\left(2\right)\\x+2y+4z=-93\left(3\right)\end{matrix}\right.\)
Thay (1) vào (2) và (3)
=> \(\left\{{}\begin{matrix}5.\frac{3}{4}y-3z=0\\\frac{3}{4}y+2y+4z=-93\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{15}{4}y-3z=0\\\frac{11}{4}y+4z=-93\end{matrix}\right.\)
Thấy Bonking làm rồi nên => ko làm nữa :v
BT1: Tìm x \(\in\) Z biết:
1) \(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)
\(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)
\(\Leftrightarrow\left(\dfrac{1-x}{2017}+1\right)+\left(\dfrac{2-x}{2016}+1\right)=\left(\dfrac{3-x}{2015}+1\right)+\left(\dfrac{4-x}{2014}+1\right)\)
\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}=\dfrac{2018-x}{2015}+\dfrac{2018-x}{2014}\)
\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}-\dfrac{2018-x}{2015}-\dfrac{2018-x}{2014}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Mà \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
\(\Leftrightarrow2018-x=0\Leftrightarrow x=2018\)
Vậy ....
BT1: Tìm x, biết:
5) \(\dfrac{1}{2}+\dfrac{1}{3}< x\le1\dfrac{1}{2}+\dfrac{1}{5}\left(x\in Z\right)\)
1/2+1/3<x<=1+1/2+1/5
=>5/6<x<=1+7/10
=>5/6<x<17/10
mà x là số nguyên
nên x=1
a, tim x€Z biet (x-6) chia het cho (x-5)
b, tim x€Z, y€Z biet (x-1).(xy-5)=5
tim x,y thuoc z biet x/5=y/3=z/4 và x-z=7
tim x,y thuộc z biết x/3=y/4=z/5 và 2z+3y+5z=86
a) Áp dụng t/ của dãy tỉ số = nhau, ta có:
x/5=y/3=z/4=x-z/5-4=7/1=7
Khi đó x/5=7=>x=35
y/3=7=>y=21
z/4=7=>z=28
Vậy _________
b) Mình sửa lại đề cho bạn nhé, bạn bị sai 1 chỗ: tim x,y thuộc z biết x/3=y/4=z/5 và 2x+3y+5z=86
Ta có: x/3=y/4=z/5 <=>2x/6=3y/12=5z/25
Áp dụng t/c của dãy tỉ số = nhau, ta có:
x/3=y/4=z/5=2x/6=3y/12=5z/25= (2x+3y+5z)/6+12+25= 86/43=2
Khi đó: x/3=2=>x=6
y/4=2=>y=8
z/5=2=>z= 10
Vậy _________
BT1
a ) Cho a > 2 và b>2 chứng minh ab>a+b
b) cho x>= 0, y >= 0, z>= 0 . Chứng minh ( x+y ) (y+z ) ( z+x )
c ) Cho a và là các số bất kì .Chứng tỏ a2+b2 chia 2 >= ab
a/
Do \(\left\{{}\begin{matrix}a>2\Rightarrow\frac{1}{a}< \frac{1}{2}\\b>2\Rightarrow\frac{1}{b}< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)
\(\Rightarrow\frac{a+b}{ab}< 1\Rightarrow a+b< ab\) (đpcm)
b/ Ko rõ đề là gì
c/ \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
Tim x y z biet x/(y-z)=y/(x+z)=z/(y-x)=x-y+z
Tim x,y,z biet x-y+z=x/(y*z)=y/(z+x)=z/(y-x)
tim x,y,z thoa man x/y+y/z+z/x=y/x+z/y+x/z=x+y+z=3
dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0)
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)