a) Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+2y+4z}{3+8+20}=\frac{-93}{31}=-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=-3\\\frac{y}{4}=-3\\\frac{z}{5}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-9\\y=-12\\z=-15\end{matrix}\right.\)
Vậy...
b) Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{-2x+y-3z}{-6+4-15}=\frac{34}{-17}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=-2\\\frac{y}{4}=-2\\\frac{z}{5}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-8\\z=-10\end{matrix}\right.\)
Vậy...
a,\(\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\\x+2y+4z=-93\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{4}\\\frac{x}{3}=\frac{z}{5}\\x+2y+4z=--93\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}4x-3y=0\\5x-3z=0\\x+2y+4z=-93\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{3}{4}y\left(1\right)\\5x-3z=0\left(2\right)\\x+2y+4z=-93\left(3\right)\end{matrix}\right.\)
Thay (1) vào (2) và (3)
=> \(\left\{{}\begin{matrix}5.\frac{3}{4}y-3z=0\\\frac{3}{4}y+2y+4z=-93\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{15}{4}y-3z=0\\\frac{11}{4}y+4z=-93\end{matrix}\right.\)
Thấy Bonking làm rồi nên => ko làm nữa :v