\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}< =>\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=3,5\)
\(=>\dfrac{x}{3}=3.5=>x=10,5\)
\(\dfrac{2y}{8}=3,5=>y=14\)
\(\dfrac{3z}{15}=3,5=>z=17,5\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}\)
- \(\dfrac{35}{10}=\dfrac{x}{3}\Rightarrow x=\dfrac{21}{2}\)
- \(\dfrac{35}{10}=\dfrac{y}{4}\Rightarrow y=14\)
-\(\dfrac{35}{10}=\dfrac{z}{5}\Rightarrow z=\dfrac{35}{2}\)
Tick cho mình với.
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
nên \(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=14\\z=\dfrac{35}{2}\end{matrix}\right.\)