Tìm ĐK của x để |B|+3<2x-1
B=(4-3x)/4
Cho B = \(\dfrac{6\sqrt{x}+19}{\sqrt{x}+3}\)đk: x >= 0
a) tìm GTLN của B
b) tìm x để B nguyên bé nhất
Cho biểu thức C= căn x+2/ căn x-3 (Đk: x >_0, x khác 9)
1.Tìm giá trị của C tại x =1/25
2. Tìm x để C=-2 , C= 7/5
3.Tìm x để B>1 , B nhỏ hơn hoặc = -7/2
1: Thay \(x=\dfrac{1}{25}\) vào C, ta được:
\(C=\left(\dfrac{1}{5}+2\right):\left(\dfrac{1}{5}-3\right)=\dfrac{11}{5}:\dfrac{-14}{5}=-\dfrac{11}{14}\)
2: Để C=-2 thì \(\sqrt{x}+2=-2\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow\sqrt{x}+2+2\sqrt{x}-6=0\)
\(\Leftrightarrow3\sqrt{x}=4\)
hay \(x=\dfrac{16}{9}\)
Để \(C=\dfrac{7}{5}\) thì \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{7}{5}\)
\(\Leftrightarrow7\sqrt{x}-21=2\sqrt{x}+10\)
\(\Leftrightarrow5\sqrt{x}=31\)
hay \(x=\dfrac{961}{25}\)
\(Q=\dfrac{x-3}{x+1}\)
`1)` Tìm `x` để `Q=-x`
`2)` Tìm `x` để `Q<1`
`3)` Tìm ĐK của `m` để luôn có gtri `x` thỏa mãn `Q=m`.
1) \(Q=-x\) khi:
\(\dfrac{x-3}{x+1}=-x\)
\(\Leftrightarrow x-3=-x\left(x+1\right)\)
\(\Leftrightarrow x-3=-x^2-x\)
\(\Leftrightarrow x-3+x^2+x\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
2) \(Q< 1\) khi:
\(\dfrac{x-3}{x+1}< 1\)
\(\Leftrightarrow x-3< x+1\)
\(\Leftrightarrow x-x< 1+3\)
\(\Leftrightarrow0< 4\) (luôn đúng)
Vậy \(Q< 0\) với mọi x
3) \(Q=m\) khi:
\(\dfrac{x-3}{x+1}=m\)
\(\Leftrightarrow x-3=m\left(x+1\right)\)
\(\Leftrightarrow x-3=mx+m\)
\(\Leftrightarrow x-mx=m+3\)
\(\Leftrightarrow x\left(1-m\right)=m+3\)
\(\Leftrightarrow1-m\ne0\)
\(\Leftrightarrow m\ne1\)
Bài 1: Cho phương trình: (m-1)x+1=0 (1)
a) Tìm ĐK của m để pt (1) là pt bậc nhất một ẩn.
b) Tìm ĐK của m để pt (1) có nghiệm x = -5.
c) Tìm ĐK của m để pt (1) vô nghiệm.
cho hs y=(m-2)x+5 a)tìm đk của M để hs đồng biến b)tìm m để đths đi qua A(1;3) c)vẽ đths với m=3
GIÚP MÌNH VỚI
Cho biểu thức: A= (√x/√x -3 + √x /√x+3): (1-3/√x+3) a) tìm đk để A có nghĩa b)rút gọn A c)Tìm x để A=-1
a: ĐKXĐ: x>0; x<>9
b: \(A=\dfrac{x+3\sqrt{x}+x-3\sqrt{x}}{x-9}:\dfrac{\sqrt{x}+3-3}{\sqrt{x}+3}\)
\(=\dfrac{2x}{x-9}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
c: Để A=-1 thì 2 căn x=-căn x+3
=>x=1
1, cho A= căn 3x-5/x-1
a, tìm đk của x để A có nghĩa
b,Tìm x để A=3
#giúp mk vs ạ
a, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3x-5}{x-1}\ge0\\x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-5\ge0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-5\le0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{3}\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{3}\\x< 1\end{matrix}\right.\)
Vậy ...
b, Ta có : \(A=\sqrt{\dfrac{3x-5}{x-1}}=3\)
\(\Leftrightarrow3x-5=9x-9\)
\(\Leftrightarrow x=\dfrac{2}{3}\left(TM\right)\)
Vậy ...
Tìm đk của m để hso \(y=x^3-x^2+mx-1\) có \(y'\ge0\) vơi moi x?
\(y'=3x^2-2x+m\)
\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow1-3m\le0\Leftrightarrow m\ge\dfrac{1}{3}\)
Tìm đk của x để giá trị của bt được xác định chứng minh rằng với đk đó bt ko phụ thuộc vào biến
a) 1/x-1 - x^3-x / x^2+1.(x/x^2-2x+1 - 1/x^2-1)
b)x / 6-x+( x / x^2-36 - x-6 / x^2+6x ) : 2x-6 / x^2+ 6x
a: \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{x}{x^2-2x+1}-\dfrac{1}{x^2-1}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x\left(x+1\right)-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{x^2+x-x+1}{x-1}\)
\(=\dfrac{1-x}{x-1}=-1\)
b: \(\dfrac{x}{6-x}+\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x^2+6x}\)
\(=\dfrac{x}{6-x}+\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}\)
\(=\dfrac{x}{6-x}+\dfrac{x^2-x^2+12x-36}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{x}{6-x}+\dfrac{12\left(x-3\right)}{2\left(x-3\right)\left(x-6\right)}\)
\(=\dfrac{x}{6-x}+\dfrac{6}{x-6}=\dfrac{-x+6}{x-6}=-1\)