1) \(Q=-x\) khi:
\(\dfrac{x-3}{x+1}=-x\)
\(\Leftrightarrow x-3=-x\left(x+1\right)\)
\(\Leftrightarrow x-3=-x^2-x\)
\(\Leftrightarrow x-3+x^2+x\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
2) \(Q< 1\) khi:
\(\dfrac{x-3}{x+1}< 1\)
\(\Leftrightarrow x-3< x+1\)
\(\Leftrightarrow x-x< 1+3\)
\(\Leftrightarrow0< 4\) (luôn đúng)
Vậy \(Q< 0\) với mọi x
3) \(Q=m\) khi:
\(\dfrac{x-3}{x+1}=m\)
\(\Leftrightarrow x-3=m\left(x+1\right)\)
\(\Leftrightarrow x-3=mx+m\)
\(\Leftrightarrow x-mx=m+3\)
\(\Leftrightarrow x\left(1-m\right)=m+3\)
\(\Leftrightarrow1-m\ne0\)
\(\Leftrightarrow m\ne1\)