Tìm y, biết y là số tự nhiên:
219,1 + y : y < y x 2 + y x 4 - y < 230 - y +y
Tìm y biết y là số tự nhiên và 220,1 + y - y < y x 2 + y x 4 - y < 230,2 + y : y
Dễ ợt
220,1 + y - y < y x 2 + y x 4 - y < 230,2 + y : y
220,1 < y x (2 + 4 - 1) < 230,2 + 1
220,1 < y x 5 < 231,2
Suy ra y x 5 = 225
Vậy y = 225 : 5 = 45
Tìm x,y là số tự nhiên biết 2 ^x + 17 = y^4
- Bạn học toán chuyên hay sao vậy mà sao đăng câu hỏi khó quá :)?
4. tìm số tự nhiên x và y, biết rằng:
a) x.(y - 2 ) = 8
b) ( x - 1 ).( y - 2 )= 9
c) ( x + 1 ) . ( y - 2 ) = 15
Mơn nhé ^ ^
\(a,x\left(y-2\right)=8\\ \Rightarrow x;\left(y-2\right)\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(x\) | \(-8\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) |
\(y-2\) | \(-1\) | \(-2\) | \(-4\) | \(-8\) | \(8\) | \(4\) | \(2\) | \(1\) |
\(y\) | \(1\) | \(0\) | \(-2\) | \(-6\) | \(10\) | \(6\) | \(4\) | \(3\) |
Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-4;0\right),\left(-2;-2\right),\left(-1;-6\right),\left(2;6\right),\left(4;4\right),\left(8;3\right)\)
\(b,\left(x-1\right)\left(y-2\right)=9\\ \Rightarrow\left(x-1\right),\left(y-2\right)\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)
\(x-1\) | \(-9\) | \(-3\) | \(-1\) | \(1\) | \(3\) | \(9\) |
\(y-2\) | \(-1\) | \(-3\) | \(-9\) | \(9\) | \(3\) | \(1\) |
\(x\) | \(-8\) | \(-2\) | \(0\) | \(2\) | \(4\) | \(10\) |
\(y\) | \(1\) | \(-1\) | \(-7\) | \(11\) | \(5\) | \(3\) |
Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-2;-1\right),\left(0;-7\right),\left(2;11\right),\left(4;5\right),\left(10;3\right)\)
\(c,\left(x+1\right)\left(y-2\right)=15\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(15\right)=\left\{-15;-1;1;15\right\}\)
\(x+1\) | \(-15\) | \(-1\) | \(1\) | \(15\) |
\(y-2\) | \(-1\) | \(-15\) | \(15\) | \(1\) |
\(x\) | \(-16\) | \(-2\) | \(0\) | \(14\) |
\(y\) | \(1\) | \(-13\) | \(17\) | \(3\) |
Vậy \(\left(x;y\right)=\left(-16;1\right),\left(-2;-13\right),\left(0;17\right),\left(14;3\right)\)
a: Tìm số tự nhiên x sao cho x+15 là bội của x+3
b:tìm các số nguyên x,y sao cho {x+1}.{y-2}=3
c:tìm các số nguyên x sao cho [x+2].[y-1]=2
g:tìm 2 số tự nhiễn,y biết x+y=12 va ƯCLN[x,y]=5
h:tim 2 số tự nhiên x,y biết x+y=32 và ƯCLN=[x,y]=8
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
tìm x và y (x>y) biết x và y là 2 số tự nhiên liên tiếp x : 36 + y : 36 = 7,25
\(\dfrac{x}{36}+\dfrac{y}{36}=7,25\)
\(\Leftrightarrow x+y=7,25:\dfrac{1}{36}=261\)
Vì x và y là 2 số tự nhiên liên tiếp , x > y
=> x - y = 1
\(\Rightarrow\left\{{}\begin{matrix}x=\left(261+1\right):2=131\\y=130\end{matrix}\right.\)
x : 36 + y : 36 = 7,25
( x + y) : 36 = 7,25
x + y = 7,25 x 36
x + y = 261
vì x và y là hai số tự nhiên liên tiếp mà x > y nên x - y = 1
Áp dụng toán tổng tỉ của lớp 4; 5 ta có
x = ( 261 + 1):2 = 131; y = 131 - 1 = 130
vậy x = 131; y = 130
1.Tìm ba số tự nhiên a,b,c nhỏ nhất khác 0 sao cho 64a=80b=96c
2.Tìm hai số tự nhiên x,y biết
x+y=19(x,y là số nguyên tố)
xy+3x+y=4
1.64a=80b=96c=>\(\frac{64a}{960}=\frac{80b}{960}=\frac{96c}{960}\)
=>\(\frac{a}{15}=\frac{b}{12}=\frac{c}{10}\)
......ko biết
2.Có:xy+3x+y=4
=>x(y+3)+y=4
=>x(y+3)+(y+3)=4+3=7
=>(x+1)(y+3)=7=>x+1 và y+3 thuộc Ư(7)
x+1 | -1 | -7 | 1 | 7 |
y+3 | -7 | -1 | 7 | 1 |
x | -2 | -8 | 0 | 6 |
y | -10 | -4 | 4 | -2 |
Với các cặp số(x;y) trên ko có số nào thỏa mãn x+y=19
Ta có: 64=2.2.2.2.2.2
80=2.2.2.2.5
96=2.2.2.2.2.3
=>BCLN(64,80,96)=2.2.2.2.2.2.3.5=960
Vì a,b,c nhỏ nhất nên 64a=80b=96c
=>a=960:64=15
b=960:80=12
c=960:96=10
Vậy a=15 ; b=12 ; c=10
Thay BCLN thành BCNN
Bài 4: Tìm số tự nhiên x; y sao cho:
a) (x + 2).(y + 1)=21 b) xy + x + y=10
c) 2 x+ xy - y=7 d) x + 2xy + y=10
Bài 5 : Tìm số tự nhiên x; y sao cho :
a) (x + y) .(x - y)=7 ( x>y)
b) x2 + y + x + xy = 11
Bài 6 : Tìm số tự nhiên a;b sao cho
a) 5ab + b = 510
b) 2a + 2b = 2a+b
Bài 4:
\(a,\Rightarrow\left(x+2\right)\left(y+1\right)=3\cdot7=7\cdot3=21\cdot1=1\cdot21\)
x+2 | 1 | 21 | 3 | 7 |
y+1 | 21 | 1 | 7 | 3 |
x | -1(loại) | 19 | 1 | 5 |
y | 20 | 0 | 6 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(19;0\right);\left(1;6\right);\left(5;2\right)\right\}\)
Tìm hai số tự nhiên x ,y biết x + y=12 và ƯCLN(x,y)=5
Tìm hai số tự nhiên x,y biết x+y=32 và ƯCLN(x,y)=8
Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau
\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)
Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)
Không thỏa mãn điều kiện vì 12 không chia hết cho 5
Ta có : \(x=8x',y=8y'\)(như trên)
Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)
Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)
Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)
á đù được của ló đấy
Tìm các số tự nhiên x và y , biết rằng :
a) \(2^{x+1}.3^y=12^x\)
b) \(10^x:5^y=20^y\)
c) \(2^x=4^{y-1}\) và \(27^y=3^{x+8}\)
a) 2x+1.3y=123
<=>2x+1.3y=(22)3.33
<=> 2x+1=26 và 3y=33
<=>x+1=6 và y=3
<=>x=5 và y=3
b) 10x : 5y=20y
<=>10x=20y.5y=100y=(102)y
<=>x=2y (Nhiều số lắm chèn)
c) 2x=4y-1
<=>2x=2y-2
<=>x=y-2
Mặt khác: 27y=3x+8
<=> 33y=3x+8
<=>3y=x+8
<=>3y=(y-2)+8
<=>2y=6
<=>y=3
=>x=y-2=3-2=1
Sửa câu a xíu he
a) 2x+1 . 3y=12x
<=>2x+1.3y=22x.3x
<=>2x+1=22x và 3y=3x
<=>x=y
và x+1=2x
<=>x=1 (và y=1)
=>Cặp (x;y)=(1;1)
a) Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=\left(2^2\right)^3\cdot3^3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2\cdot3\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=3\end{matrix}\right.\)
Vậy: (x,y)=(5;3)
b) Ta có: \(10^x:5^y=20^y\)
\(\Leftrightarrow10^x=20^y\cdot5^y\)
\(\Leftrightarrow10^x=100^y\)
\(\Leftrightarrow x=2y\)