Tìm 2 số tự nhiên x và y thỏa mãn biết x2+45 =y2
TÌm các số tự nhiên x, y, z thỏa mãn x2 + y2 = 2023z + 35
Tìm các bộ số tự nhiên ( x , y ,z ) thỏa mãn x \(\le\) y \(\le\) z; x2+y2+z2=34. ( Ai giúp mình với )
Dùng phương pháp chặn :
x \(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2
\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3 (1)
x2 + y2 + z2 = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)
Kết hợp (1) và (2) ta có :
34/3 \(\le\) z2 \(\le\) 34
\(\Rightarrow\) z2 \(\in\) { 16; 25}
vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}
th1 Z = 4 ta có :
x2 + y2 + 16 = 34
x2 + y2 = 12
x \(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)
x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)
Kết hợp (*) và (**) ta có :
6 \(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3
với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)
th2 : z = 5 ta có :
x2 + y2 + 25 = 34
\(\Rightarrow\) x2 + y2 = 34 - 25 = 9
x \(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)
x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)
Kết hợp (a) và (b) ta có :
9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3
với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0
kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt
Cho x 1 là số tự nhiên thỏa mãn (x+74)–318=200 và x 2 là số tự nhiên thỏa mãn (x:23+45).67=8911. Khi đó x 1 + x 2 bằng
A. 2912
B. 4492
C. 2468
D. 4538
là số nguyên tố
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
1) Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=3m+2\\2x-3y=m-11\end{matrix}\right.\)
(m là tham số)
Tìm giá trị m không âm để hệ phương trình có nghiệm (x;y) thỏa mãn (x2+1)+(y2+1)=12
2) Tìm một số tự nhiên có hai chữ số biết rằng tổng của 5 lần chữ số hàng chục và 2 lần chuex số hàng đơn vị là 29.Nếu viết hai chữ số của nó theo thứ tự ngược lại thì số mới có hai chữ số lớn hơn số ban đầu 36 đơn vị.
Bài 2:
Gọi số ban đầu là \(\overline{ab}\)
Theo đề, ta có: 5a+2b=29 và 10b+a-10a-b=36
=>5a+2b=29 và -9a+9b=36
=>a=3 và b=7
tìm các số tự nhiên xy biết (x,y)=1 và x+y/x2+y2 = 7/25
Tìm các số nguyên tố x,y sao cho : x^2 +45=y/2
Tìm các số tự nhiên a,b thỏa mãn điền kiện 11/17<a/b<23/29 và 8b-9a=31
Tìm các số tự nhiên x,y sao cho 7^x+12^y=50
Biết x2+4y2+9z2=3 Tìm GTLN của S=2x+4y+6x
Cho x;y ∈ 𝑅 thỏa mãn x2+y2 -xy=4 . Tìm giá trị lớn nhất và nhỏ nhất của C= x2+y2
a) Áp dụng bất đẳng thức Cosi ta có :
\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)
Suy ra \(S\leq 6\)
Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)
Tìm các số tự nhiên x, y thỏa mãn 11y - x2 + 13x = -23
Với: y=0 thì: \(-x^2+13x=-24\text{ nên: }x^2-13x-24=0\text{ thấy ngay phương trình này ko có nghiệm nguyên}\)
\(\text{Nếu: }y>0\text{ thì: }x^2-13x=23+11^y\text{ do đó: }\left(x-1\right)^2-11x=24+11^y\text{ do đó: }\left(x-1\right)^2\text{ chia 11 dư 2}\)
THấy ngay 1 số chia 11 dư 0;+-1 ; +-2; +-3;....;+-5 mà: 0;1;4;9;16;25 không có số nào chia 11 dư 2 nên loại nên phương trình vô nghiệm
Lời giải:
PT $\Leftrightarrow 11^y=x^2-13x-23$
Nếu $x\equiv 0\pmod 3$ thì:
$x^2-13x-23\equiv -23\equiv 1\pmod 3$
Nếu $x\equiv 1\pmod 3$ thì:
$x^2-13x-23\equiv 1-13-23\equiv 1\pmod 3$
Nếu $x\equiv 2\pmod 3$ thì:
$x^2-13x-23\equiv 1-13.2-23\equiv 0\pmod 3$
Do đó $11^y\equiv 0\pmod 3$ (vô lý) hoặc $11^y\equiv 1\pmod 3$
$\Rightarrow (-1)^y\equiv 1\pmod 3$
$\Rightarrow y$ chẵn. Đặt $y=2t$
$11^{2t}-x^2+13x+23=0$
$(2.11^{t})^2-(2x-13)^2=-261$
$(2.11^t-2x-13)(2.11^t+2x+13)=-261$
Đến đây là dạng phương trình tích cơ bản. Bạn có thể dễ dàng giải.
Lời giải:
PT $\Leftrightarrow 11^y=x^2-13x-23$
Nếu $x\equiv 0\pmod 3$ thì:
$x^2-13x-23\equiv -23\equiv 1\pmod 3$
Nếu $x\equiv 1\pmod 3$ thì:
$x^2-13x-23\equiv 1-13-23\equiv 1\pmod 3$
Nếu $x\equiv 2\pmod 3$ thì:
$x^2-13x-23\equiv 1-13.2-23\equiv 0\pmod 3$
Do đó $11^y\equiv 0\pmod 3$ (vô lý) hoặc $11^y\equiv 1\pmod 3$
$\Rightarrow (-1)^y\equiv 1\pmod 3$
$\Rightarrow y$ chẵn. Đặt $y=2t$
$11^{2t}-x^2+13x+23=0$
$(2.11^{t})^2-(2x-13)^2=-261$
$(2.11^t-2x-13)(2.11^t+2x+13)=-261$
Đến đây là dạng phương trình tích cơ bản. Bạn có thể dễ dàng giải.