\(\dfrac{3-3x}{5}\)=\(\dfrac{x-1}{2}\) help em vs mn
\(\dfrac{3x+2}{3}\le\dfrac{x-4}{7}\) help em vs mn ơi
`(3x+2)/3 <= (x-4)/7`
`<=>7(3x+2) <= 3(x-4)`
`<=> 21x+14<=3x-12`
`<=>18x <= -26`
`<=> x <=-13/9`
\(\dfrac{2x-5}{3}=\dfrac{x+2}{2}\) help em vs mn ơi
\(\left(2x-5\right).2=\left(x+2\right).3\)
\(\Rightarrow4x-10=3x+6\)
\(\Rightarrow x=16\)
\(\dfrac{2x+5}{3}=\dfrac{x+2}{2}\)
MTC : 6
Quy đồng mẫu thức :
\(\Rightarrow\) \(\dfrac{2\left(2x+5\right)}{6}=\)\(\dfrac{3\left(x+2\right)}{6}\)
Suy ra : 2(2x + 5) = 3(x + 2)
\(\Leftrightarrow\) 4x + 10 = 3x + 6
\(\Leftrightarrow\) 4x + 10 - 3x - 6 = 0
\(\Leftrightarrow\) x + 4 = 0
\(\Leftrightarrow\) x = - 4
Vậy S = \(\left\{-4\right\}\)
Chúc bạn học tốt
\(\dfrac{3}{5}x^3y\left(10xy^3-\dfrac{5}{3}y^2+\dfrac{5}{6}xy\right)\) help em vs mn ơi
\(=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\)
\(\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{x^2-9}\) help em vs mn ơi
ĐK: ` x\ne \pm 3`
`(x+1)/(x-3)+(x-1)/(x+3)=(x+6)/(x^2-9)`
`<=>(x+1)(x+3)+(x-1)(x-3)=x+6`
`<=>x^2+4x+3+x^2-4x+3=x+6`
`<=>2x^2+6=x+6`
`<=>2x^2-x=0`
`<=>x(2x-1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy `S={0; 1/2}`.
ĐKXĐ: x ≠ -3, x ≠ 3
\(\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{x^2-9}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+3\right)+\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow x^2+4x+3+x^2-4x+3=x+6\)
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\)
Vậy...
\(\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{x^2-9}\)(a)
ĐKXĐ\(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
(a)\(\Leftrightarrow\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\left(x+1\right).\left(x+3\right)+\left(x-1\right).\left(x-3\right)=x+6\)
\(\Leftrightarrow x^2+3x+x+3+x^2-3x-x+3=x+6\)
\(\Leftrightarrow x^2+3x+x+x^2-3x-x-x=6-3-3\)
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(thỏa-mãn-ĐKXĐ\right)\\x=\dfrac{1}{2}\left(thỏa-mãn-ĐKXĐ\right)\end{matrix}\right.\)
Vậy S = \(\left\{0;\dfrac{1}{2}\right\}\)
\(\dfrac{x}{x+4}+\dfrac{56-x^2}{x^2}=\dfrac{5}{x-4}\) help em vs mn oi
\(\dfrac{3x+2}{3}\le\dfrac{x-4}{7}\) help em với mn ơi
`(3x+2)/3 <= (x-4)/7`
`<=>7(3x+2) <= 3(x-4)`
`<=>21x+14 <= 3x-12`
`<=> 18x <=-26`
`<=>x <= -13/9`
Vậy `x<=-13/9`.
1)(3x2+2x+4)2=(x2-4)2
2) (2x2-3x-4)2=(x2-x)2
3) \(\dfrac{2}{x+1}-\dfrac{3}{x+2}=\dfrac{1}{3x+3}\)
4) \(\dfrac{x}{x-3}=\dfrac{1}{x+2}\)
5) \(\dfrac{4}{x-2}+\dfrac{x}{x+1}=\dfrac{x^2-2}{x^2-x-2}\)
gúp em tl câu hỏi trên vs ạ em đag cần gấp em c.ơn trước
\(5,\dfrac{4}{x-2}+\dfrac{x}{x+1}-\dfrac{x^2-2}{\left(x-2\right)\left(x+1\right)}=0\left(dkxd:x\ne2;-1\right)\)
\(\Rightarrow4\left(x+1\right)+x\left(x-2\right)-x^2-2=0\)
\(\Rightarrow4x+4+x^2-2x-x^2-2=0\)
\(\Rightarrow2x+2=0\)
\(\Rightarrow x=-1\left(loai\right)\)
Vậy \(S=\varnothing\)
\(4,\dfrac{x}{x-3}-\dfrac{1}{x+2}=0\left(dkxd:x\ne3;-2\right)\)
\(\Rightarrow x\left(x+2\right)-\left(x-3\right)=0\)
\(\Rightarrow x^2+3x-x+3=0\)
\(\Rightarrow x^2+2x+3=0\)
\(\Rightarrow S=\varnothing\)
\(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)
MN help mình với
Ta có:2x+6=2(x+3);x2+3x=x(x+3)
➞MTC:2x(x+3)
Ta co:(x+1/2x+6)+(2x+3/x2+3x)={[(x+1)x]+[(2x+3)2]}/2x(x+3)=x2+5x+6/2x(x+3)=(x+2)(x+3)/2x(x+3)=x+2/2x
Tính:
\(\dfrac{x^3+8}{x^2-2x+1}\) X \(\dfrac{x^2+3x+2}{1-x^2}\)
Mn giúp mik vs ạ
Lời giải:
$\frac{x^3+8}{x^2-2x+1}.\frac{x^2+3x+2}{1-x^2}=\frac{(x^3+8)(x^2+3x+2)}{(x^2-2x+1)(1-x^2)}$
$=\frac{(x+2)(x^2-2x+4)(x+1)(x+2)}{(x-1)^2(1-x)(x+1)}$
$=\frac{(x+2)^2(x^2-2x+4)}{-(x-1)^3}$