Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hàn hàn
Xem chi tiết
HT.Phong (9A5)
12 tháng 7 2023 lúc 11:29

a) \(\sqrt{2x-1}=\sqrt{5}\) (ĐK: \(x\ge\dfrac{1}{2}\))

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\left(tm\right)\)

b) \(\sqrt{x-10}=-2\) 

⇒ Giá trị của biểu thức trong căn luôn dương nên phương trình vô nghiệm

c) \(\sqrt{\left(x-5\right)^2}=3\) 

\(\Leftrightarrow\left|x-5\right|=3\)

TH1: \(\left|x-5\right|=x-5\) với \(x-5\ge0\Leftrightarrow x\ge5\)

Pt trở thành:

\(x-5=3\) (ĐK: \(x\ge5\))

\(\Leftrightarrow x=3+5\)

\(\Leftrightarrow x=8\left(tm\right)\)

TH2: \(\left|x-5\right|=-\left(x-5\right)\) với \(x-5< 0\Leftrightarrow x< 0\)

Pt trở thành:

\(-\left(x-5\right)=3\) (ĐK: \(x< 5\))

\(\Leftrightarrow-x+5=3\)

\(\Leftrightarrow-x=-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy: \(S=\left\{2;8\right\}\)

Minh Lệ
12 tháng 7 2023 lúc 11:36

a/ ĐKXĐ: 2x - 1 >= 0 <=> 2x > 1 <=> x>= 1/2

\(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\left(tm\right)\)

b/ ĐKXĐ: x - 10 >= 0 <=> x >= 10

Biểu thức trong căn luôn nhận giá trị dương => vô nghiệm

c/ ĐKXĐ: x - 5 >=0 <=> x >= 5

\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)

Phùng Kim Thanh
Xem chi tiết
Nguyễn Minh Sơn
13 tháng 10 2021 lúc 10:15

Theo đề ta có : x + 1 chia hết cho 2, 4, 5  và x là số nhỏ nhất hay x + 1 thuộc BCNN(2, 4, 5)

Ta có: 2 = 2 ; 4 = 22  ; 5 = 5

=> BCNN(2, 4, 5) = 2. 5 = 20

=> x + 1 = 20 => x = 20 - 1= 19

Vậy x = 19 

Nguyễn Hoàng Minh
13 tháng 10 2021 lúc 10:17

x chia 2 dư 1; x chia 4 dư 3; x chia 5 dư 4

\(\Rightarrow x+1\in BC\left(2,4,5\right)=B\left(20\right)=\left\{20;40;...\right\}\)

Mà \(x\) nhỏ nhất nên \(x-1\) nhỏ nhất

\(\Rightarrow x+1=20\Rightarrow x=19\)

hàn hàn
Xem chi tiết
HT.Phong (9A5)
25 tháng 7 2023 lúc 11:38

a) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left(2x+1\right)^2=6^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)

\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)

\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)

Võ Việt Hoàng
25 tháng 7 2023 lúc 12:02

a) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)

\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)

 

Võ Việt Hoàng
25 tháng 7 2023 lúc 12:08

c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)

\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)

d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)

 

dinh thi tuyet hong
Xem chi tiết
Phạm Minh Anh
Xem chi tiết
Vinh Pham
Xem chi tiết
Trúc Giang
2 tháng 9 2020 lúc 15:03

\(\left(x^2-16\right)-\left(x-4\right)^2=0\)

\(\Rightarrow x^2-16-\left(x^2-8x+16\right)=0\)

\(\Rightarrow x^2-16-x^2+8x-16=0\)

\(\Rightarrow8x-32=0\)

\(\Rightarrow8x=0+32=32\)

\(\Rightarrow x=32:8=4\)

Nguyễn Lê Vy
Xem chi tiết
Đoàn Đức Hà
13 tháng 7 2021 lúc 23:53

\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)

\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)

\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)

\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)

\(=\left(2x^2+16x+7\right)^2-49\)

\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)

\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)

Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).

Khách vãng lai đã xóa
☆Châuuu~~~(๑╹ω╹๑ )☆
12 tháng 4 2022 lúc 6:09

Về học lại hằng đẳng thức nha .-.

\(\Leftrightarrow\dfrac{\left(x+2\right)+5}{2-x}=\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}\\ \Leftrightarrow-\left(x+2\right)+5\left(x+2\right)=2x-3\\ \Leftrightarrow6x+12-2x+3=0\\ \Leftrightarrow4x+15=0\\ \Leftrightarrow x=\dfrac{-15}{4}\)

YangSu
12 tháng 4 2022 lúc 6:18

\(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{5}{x-2}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\left(đk:x\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{x-2-5\left(x+2\right)-2x-3}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x-2-5x-10-2x-3=0\)

\(\Leftrightarrow-6x-15=0\)

\(\Leftrightarrow-6x=15\)

\(\Leftrightarrow x=-\dfrac{15}{6}\left(n\right)\)

Vậy \(S=\left\{-\dfrac{15}{6}\right\}\)

Đỗ Tuệ Lâm
12 tháng 4 2022 lúc 7:27

\(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\) đkxđ : x khác 2 , x khác -2.

<=> \(\dfrac{1}{x+2}-\dfrac{5}{x-2}-\dfrac{2x-3}{x^2-4}=0\)

<=> \(\dfrac{1.\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{5.\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\)

<=>\(x-2-5x-10-2x+3=0\)

<=> \(-6x-9=0\)

<=> \(x=-\dfrac{9}{6}=-\dfrac{3}{2}\left(nhận\right)\)

Vậy pt có nghiệm \(S=\left\{-\dfrac{3}{2}\right\}\)