CM các bất đẳng thức sau
a) \(\left(x+y\right)\left(xy+1\right)\ge4xy\) với x, y là các số không âm
b) \(x^2+y^2+z^2+2xyz<2\)với x, y, z là độ dài 3 cạnh của tam giác có chu vi bẳng 2
CM các bất đẳng thức sau
a. \(\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)\ge\left(1+xyz\right)^2\)
b. \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{1}{1+xy}\)
vote cho mk đi vote lại cho ok
a)BĐT \(\Leftrightarrow\left(y^2+z^2+1\right)x^2-2yz.x+y^2+y^2z^2+z^2\ge0\)
Ta có: \(\le0\)( tag ảnh vào cho nó nhanh, ko biết olm có hiển thị hay ko!)
Vậy ta có đpcm. Đẳng thức xảy ra khi x = y = z = 0
b) Hình như sai đề ạ!
P/s: Em ko chắc cho lắm!
CM các bđt sau
a) x(x+1)(x+2)(x+3)+1 lớn hơn hoặc bằng 0 với mọi số thực x
b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)lớn hơn hoặc bằng \(\left(ax+by+cz\right)^2\) với mọi số thức a,b,c,x,y,z
giúp mình với
a: =(x^2+3x)(x^2+3x+2)+1
=(x^2+3x)^2+2(x^2+3x)+1
=(x^2+3x+1)^2>=0 với mọi x
b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2
=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz
=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)
=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)
CM các bất đẳng thức sau:
a) \(x^2-y^2=\left(x+y\right)\left(x-y\right)\)
b) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(x^2-y^2\)
\(=x^2-xy+xy-y^2=x.\left(x-y\right)+y.\left(x-y\right)=\left(x+y\right).\left(x-y\right)\)
\(\left(x+y\right).\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
c) \(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
e) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
f) \(x^3+y^3+z^3\ge3xyz\)
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Cộng các phân thức đại số sau vào với nhau:
\(\frac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}+\frac{1}{\left(z-x\right)\left(y^2+xy-z^2-zx\right)}+\frac{1}{\left(x-y\right)\left(z^2+yz-x^2-xy\right)}\)
Giúp mình với các bạn
Phân tích các đa thức sau thành nhân tử:
a) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
b) \(a\left(x^2+1\right)-x\left(a^2+1\right)\)
c) \(x^2y+xy^2+xz^2+yz^2+x^2z+y^2z+2xyz\)
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho các số thực x, y, z thỏa mãn \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ne0\)và x+y+z = 1. Chứng minh giá trị của biểu thức sau không phụ thuộc vào x, y, z
\(T=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)
Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>