Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
didudsui
Xem chi tiết
nguyễn hoàng sơn
26 tháng 10 2019 lúc 23:26

vote cho mk đi vote lại cho ok

Khách vãng lai đã xóa
didudsui
26 tháng 10 2019 lúc 23:31

help me please

Khách vãng lai đã xóa
tth_new
27 tháng 10 2019 lúc 8:30

a)BĐT \(\Leftrightarrow\left(y^2+z^2+1\right)x^2-2yz.x+y^2+y^2z^2+z^2\ge0\)

Ta có: Δ_x = -4 (y^4 z^2 + y^4 + y^2 z^4 + 2 y^2 z^2 + y^2 + z^4 + z^2) \(\le0\)( tag ảnh vào cho nó nhanh, ko biết olm có hiển thị hay ko!)

Vậy ta có đpcm. Đẳng thức xảy ra khi x = y = z = 0

b) Hình như sai đề ạ!

P/s: Em ko chắc cho lắm!

Khách vãng lai đã xóa
Hơi khó
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2023 lúc 23:41

a: =(x^2+3x)(x^2+3x+2)+1

=(x^2+3x)^2+2(x^2+3x)+1

=(x^2+3x+1)^2>=0 với mọi x

 

b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2

=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz

=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)

=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)

JJ710
Xem chi tiết

\(x^2-y^2\)

\(=x^2-xy+xy-y^2=x.\left(x-y\right)+y.\left(x-y\right)=\left(x+y\right).\left(x-y\right)\)

\(\left(x+y\right).\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)

Nguyễn Đặng Hoàng Anh
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 22:20

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 22:13

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Trên con đường thành côn...
4 tháng 9 2021 lúc 22:16

undefinedundefined

ta thi hong hai Tathpthu...
Xem chi tiết
ta thi hong hai Tathpthu...
13 tháng 11 2019 lúc 17:26

Giúp mình với các bạn

Khách vãng lai đã xóa
Thỏ bông
Xem chi tiết
Tui là Hacker
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 15:30

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

Cù Hương Ly
Xem chi tiết
Sắc màu
19 tháng 8 2018 lúc 15:26

Mang hết bài tập lên hỏi à, sao nhiều thế

Cù Hương Ly
19 tháng 8 2018 lúc 15:35

Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>

Phan quang
19 tháng 8 2018 lúc 15:37

bon may ngao het roi