3x^2 - 6x = -8
giải pt :
a,\(9x^2-6x-5=\sqrt{3x+5}\)
b, \(9x^2+12x-2=\sqrt{3x+8}\)
c, \(x^2-4x-3=\sqrt{x+5}\)
d,\(x^2-6x-2=\sqrt{x+8}\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)
Đặt \(\sqrt{3x+5}=t\ge0\)
\(\Rightarrow9x^2-3x-t^2-t=0\)
\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
ĐKXĐ: \(x\ge-5\)
\(x^2-3x+2-x-5-\sqrt{x+5}=0\)
Đặt \(\sqrt{x+5}=t\ge0\)
\(\Rightarrow-t^2-t+x^2-3x+2=0\)
\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-\dfrac{8}{3}\)
\(\left(3x+2\right)^2-6-\sqrt{3x+8}=0\)
Đặt \(\sqrt{3x+8}=t\ge0\Rightarrow3x+2=t^2-6\)
\(\left(t^2-6\right)^2-6-t=0\)
\(\Leftrightarrow t^4-12t^2-t+30=0\)
\(\Leftrightarrow\left(t^2+t-5\right)\left(t^2-t-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+8}=3\\\sqrt{3x+8}=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Câu 11: Đa thức 27x3 - 8 được phân tích thành nhân tử có kết quả là
A. (27x – 2)(27x2 + 54x + 4)
B. (3x – 2)(3x2 + 6x + 4)
C. (3x – 2)(9x2 – 6x – 4)
D. (3x – 2)(9x2 + 6x + 4)
thực hiện phép tính:
a.3x(x^2+6x+2)
b.(x-3)(x^2+6x+8)
a)
\(3x\left(x^2+6x+2\right)\)
\(=3x.x^2+3x.6x+3x.2\)
\(=3x^3+18x^2+6x\)
b)
\(\left(x-3\right)\left(x^2+6x+8\right)\)
\(=x\left(x^2+6x+8\right)-3\left(x^2+6x+8\right)\)
\(=x^3+6x^2+8x-3x^2-18x-24\)
\(=x^3+3x^2-10x-24\)
tìm x
a) ( 2x-3)^2 - 4(x + 2)( x-2) -x = 8
b) ( 3x^3 + 6x^2) : 3x^2 + ( 9x^2 - 6x) : 0,5x = 9
a) \(4x^2-12x+9-4\left(x^2-4\right)-x=8\)
\(4x^2-12x+9-4x^2+16-x=8\)
\(-13x+25=8\)
\(-13x=-17\)
\(x=\dfrac{17}{13}\)
b) \(\left(3x^3+6x^2\right):3x^2+\left(9x^2-6x\right):0,5x=9\)
\(x+2+18x-12=9\)
\(19x-10=9\)
\(19x=19\)
\(x=1\)
a) (2x - 3)2 - 4(x + 2)(x - 2) - x = 8
4x2 - 12x + 9 - 4(x2 - 4) - x = 8
4x2 - 12x + 9 - 4x2 + 16 - x = 8
-13x + 25 = 8
\(\Rightarrow\) -13x = -17
\(\Rightarrow\) x = \(\dfrac{17}{13}\)
b) (3x3 + 6x2) : 3x2 + (9x2 - 6x) : 0,5x = 9
3x2(x + 2) : 3x2 + 3x(3x - 2) : 0,5x = 9
\(\Rightarrow\) x + 2 + 6.(3x - 2) = 9
\(\Rightarrow\) x + 2 + 18x - 12 = 9
\(\Rightarrow\) 19x - 10 = 9
\(\Rightarrow\) 19x = 19
\(\Rightarrow\) x = 1
chúc bn học tốt. nhớ tik mik nhé
a,2(1-6x)=(8+2x)
b,1/3-2x/5=1/10+4x/7
c,1-3x/+1=5-6x/2
câu c là tử số là 1-3x và 5-6x
a: =>2-12x=8+2x
=>-14x=6
=>x=-3/7
b: \(\dfrac{1}{3}-\dfrac{2}{5}x=\dfrac{1}{10}+\dfrac{4}{7}x\)
=>-2/5x-4/7x=1/10-1/3
=>-14/35x-20/35x=3/30-10/30
=>-34/35x=-7/30
=>x=7/30:34/35=49/204
Rút gọn phân thức sau: a) (3x-6)/(x^3-6x^2+12x-8) b) (x^3+2x^2)/(x^3+6x^2+12x+8)
a: \(=\dfrac{3\left(x-2\right)}{\left(x-2\right)^3}=\dfrac{3}{\left(x-2\right)^2}\)
b: \(=\dfrac{x^2\left(x+2\right)}{\left(x+2\right)^3}=\dfrac{x^2}{\left(x+2\right)^2}\)
B5:Giải pt:
a)2x\(^2\)-8=0
b)3x\(^3\)-5x=0
c)x\(^4\)+3x\(^2\)-4=0
d)3x\(^2\)+6x-9=0
e)\(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)
g)5x\(^4\)+6x\(^2\)-11=0
a. 2x\(^2\)-8=0
2x\(^2\)=8
x\(^2\)=4
x=2
b.3x\(^3\)-5x=0
x(3x\(^2\)-5)=0
\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)
c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)
đặt t=x\(^2\) (t>0)
ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)
thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm
t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4
khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1
khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2
vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2
d)3x\(^2\)+6x-9=0
thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm
x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)
e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\) (ĐK: x#5; x#2 )
⇔\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)
⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0
⇔-7x\(^2\) - 6x + 46=0
Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0
\(\sqrt{\Delta'}=\sqrt{62}\)
vậy pt có 2 nghiệm phân biệt
x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)
x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)
vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......
câu g làm tương tự câu c
tim x
-2x(6x-2)+3x(4x-7)=8
(7x-2)(2x+3)-(3x-5)(4x+6)=2x2-5
+(-2x+3)-6x(3x-4)=-22x2+7x
⇔(2 x ) 2+2.2 x .1+1 2=0 ... c ,(3 x −4) 2−14(3 x −4)(6+3 x )+49(3 x +6)=16 ... ⇔9 x 2−24 x +16−126 x 2−252 x +168 x +336+147 x +294=16.
https://olm.vn/hoi-dap/detail/192758180810.html
\(-2x\left(6x-2\right)+3x\left(4x-7\right)=8\)
<=> \(-12x^2+4x+12x^2-21x=8\)
<=> \(-17x=8\)
<=> \(x=-\frac{8}{17}\)
\(\left(7x-2\right)\left(2x+3\right)-\left(3x-5\right)\left(4x+6\right)=2x^2-5\)
<=> \(14x^2+17x-6-12x^2+2x+30=2x^2-5\)
<=> \(14x^2+17x-6-12x^2+2x+30-2x^2+5=0\)
<=> \(19x+29=0\)
<=> \(19x=-29\)
<=> \(x=-\frac{29}{19}\)
Ý cuối mình k biết -22x2 là -22.2 hay -22x2 nữa :)
tim x
-2x(6x-2)+3x(4x-7)=8
(7x-2)(2x+3)-(3x-5)(4x+6)=2x2-5
+(-2x+3)-6x(3x-4)=-22x2+7x
Tìm x:
1) -3.(1-2x) - 4.(1+3x) = -5x + 5
2) 3.(2x - 5) - 6.(1 - 4x) = -3x + 7
3) (1 - 3x) - 2.(3x - 6) = -4x - 5
4) x.(4x - 3) - 2x.(2x - 1) = 5x - 7
5) 3x.(2x - 1) - 6x.(x + 2) = -3x + 4
6) (1 - 2x).3 - 4.(6x - 1) = 7x - 5
7) 6x - 3.(1 - 4x) - 5.(x + 1) = 2x + 7
8) 6.(1 - 3x) - 3.(2x + 5) = -10x + 7
9) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
10) 2x.(1 + 3x) - 3x.(4 + 2x) = 3x - 4
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)