TÍNH
A = \(\frac{4}{1.2}\)+ \(\frac{4}{2.3}\)+ \(\frac{4}{3.4}\)+ ...........+ \(\frac{4}{2014.2015}\)
tính:
a)\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2014.2015}\)
(còn nữa)
`A=4/(1.2)+4/(2.3)+4/(3.4)+......+4/(2014.2015)`
`=4(1/(1.2)+1/(2.3)+1/(3.4)+......+1/(2014.2015))`
`=4(1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015)`
`=4(1-1/2015)`
`=4. 2014/2015`
`=8056/2015`
A=4.(1/1.2+1/2.3+...+1/2014.2015)
A=4.(1-1/2+1/2-1/3+...+1/2014-1/2015)
A=4.(1-1/2015)
A=4.2014/2015
A=8056/2015
Giải:
\(A=\dfrac{4}{1.2}+\dfrac{4}{2.3}+\dfrac{4}{3.4}+...+\dfrac{4}{2014.2015}\)
\(A=4.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}\right)\)
\(A=4.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(A=4.\left(\dfrac{1}{1}-\dfrac{1}{2015}\right)\)
\(A=4.\dfrac{2014}{2015}\)
\(A=\dfrac{8056}{2015}\)
giúp mình với
tính giá trị biểu thức
A=\(\frac{4}{1.2}\)+\(\frac{4}{2.3}\)+\(\frac{4}{3.4}\)+...+\(\frac{4}{2014.2015}\)
mình cảm ơn
\(A=\frac{4}{1.2}+\frac{4}{2.3}+...+\frac{4}{2014.2015}\)
\(A=4\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}\right)\)
\(A=4\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(A=4\left(\frac{1}{1}-\frac{1}{2015}\right)\)
\(A=4\left(\frac{2015-1}{2015}\right)\)
\(A=4.\frac{2014}{2015}\)
... BẠN TỰ LÀM NỐT NHÉ!
\(\frac{4}{1.2}+\frac{4}{2.3}+...+\frac{4}{2014.2015}\)
Mình chỉ cần đáp án thôi ....( có lòi giải càng tốt )
\(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+...+\frac{4}{2014\cdot2015}\)
\(=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2014\cdot2015}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=4\left(1-\frac{1}{2015}\right)\)
\(=4\cdot\frac{2014}{2015}=\frac{8056}{2015}\)
Tinh A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
A=1/1-1/2+1/2-1/3+1/3-...........+1/2014-1/2015
A=1/1-1/2015
A=2014/2015
Tính bằng cách hợp lý
a) \(\frac{-1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{99.100}\)
b)\(\frac{-4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{96.100}\)
\(Cho\)A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
Giá trị x thoa man
=1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015
Trừ tất cả ta được 1-1/2015=2014/2015
=1-1/2+1/2-1/3+1/3-1/4+.....+1/2014-1/2015
=1-1/2015=2014/2015
=1-(1/2+1/2-1/3+1/3-1/4+...+1/2014-1/2015)
=1-1/2015
=2014/2015.
Nếu đúng thì nhớ tíck cho mk nhé!!!Thanh you...
Tính A = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(-2-4-6-...-100\right)+\)\(\left(-1.2-2.3-3.4-...-99.100\right)\)
tính giá trị biểu thức : A= 4/1.2+4/2.3+4/3.4+...4/2014.2015
\(A=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)
1.
a.\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)
b. \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)
1.
a. \(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)
\(=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=5.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=5.\left(1-\frac{1}{100}\right)\)
\(=5.\frac{99}{100}\)
\(=\frac{99}{20}\)
b. \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{4}{2}.\left(1-\frac{1}{101}\right)\)
\(=2.\frac{100}{101}\)
\(=\frac{200}{101}\)
Đặt \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)
\(\Rightarrow\frac{1}{2}A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(\Rightarrow\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow\frac{1}{2}A=1-\frac{1}{101}\)
\(\Rightarrow\frac{1}{2}A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}.2\)
\(\Rightarrow A=\frac{200}{101}.\)