`A=4/(1.2)+4/(2.3)+4/(3.4)+......+4/(2014.2015)`
`=4(1/(1.2)+1/(2.3)+1/(3.4)+......+1/(2014.2015))`
`=4(1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015)`
`=4(1-1/2015)`
`=4. 2014/2015`
`=8056/2015`
A=4.(1/1.2+1/2.3+...+1/2014.2015)
A=4.(1-1/2+1/2-1/3+...+1/2014-1/2015)
A=4.(1-1/2015)
A=4.2014/2015
A=8056/2015
Giải:
\(A=\dfrac{4}{1.2}+\dfrac{4}{2.3}+\dfrac{4}{3.4}+...+\dfrac{4}{2014.2015}\)
\(A=4.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}\right)\)
\(A=4.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(A=4.\left(\dfrac{1}{1}-\dfrac{1}{2015}\right)\)
\(A=4.\dfrac{2014}{2015}\)
\(A=\dfrac{8056}{2015}\)
\(A=\dfrac{4}{1.2}+\dfrac{4}{2.3}+\dfrac{4}{3.4}+...+\dfrac{4}{2014.2015}\)
\(=4\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}\right)\)
\(=4\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(=4\left(\dfrac{1}{1}-\dfrac{1}{2015}\right)\)
\(=\) \(4.\dfrac{2014}{2015}\)
\(=\dfrac{8056}{2015}\)
Chúc bạn học tốt!! ^^