Tính giá trị của biểu thức, bt: \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\\ A=\dfrac{3.\dfrac{a}{b}-\dfrac{-a}{b}}{-\dfrac{5a}{b}+\dfrac{4a}{b}}\)
Tìm giá trị của biểu thức bt: \(a=\dfrac{2021}{2022},b=\dfrac{2023}{2022}\\ B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{\dfrac{-5bb}{6}}\)
\(B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{\dfrac{4ab}{6}-\dfrac{9ab}{6}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{-\dfrac{5ab}{6}}{-\dfrac{5bb}{6}}=\dfrac{ab.\dfrac{5}{6}}{bb.\dfrac{5}{6}}\)
\(=\dfrac{ab}{bb}=\dfrac{a}{b}\)
Với \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\), ta được:
\(B=\dfrac{2021}{2022}:\dfrac{2023}{2022}=\dfrac{2021}{2022}.\dfrac{2022}{2023}=\dfrac{2021}{2023}\)
cho a,b,c là cá số thực thoả mãn
a+b+c=2022 và\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=\(\dfrac{1}{2022}\)
tính giá trị của biểu thức B=\(\dfrac{1}{a^{2021}}\)+\(\dfrac{1}{b^{2021}}\)+\(\dfrac{1}{c^{2021}}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
\(\Rightarrow\dfrac{bc+ca+ab}{abc}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
\(\Rightarrow c=2022\) hay \(a=2022\) hay \(b=2022\)
-Nếu \(a=-b\)\(\Rightarrow B=\dfrac{1}{a^{2021}}+\dfrac{1}{b^{2021}}+\dfrac{1}{c^{2021}}=\dfrac{1}{a^{2021}}-\dfrac{1}{a^{2021}}+\dfrac{1}{2022^{2021}}=\dfrac{1}{2022^{2021}}\)
-Tương tự các trường hợp còn lại.
Cho ba số a,b,c thỏa mãn :
+) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
+) \(a+b+c=2022\\ \)
Tính giá trị của biểu thức P = \(\left(a^{2019}+b^{2019}\right)\left(c^{2021}+b^{2021}\right)\left(a^{2023}+c^{2023}\right)\)
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
hay \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+3abc=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
-Xét a + b = 0 => P = 2022^2021
Bạn xét tương tự với b + c = 0 và c + a = 0 dc P = 2022^2021 nhé
a+bab+a+bc(a+b+c)=0a+bab+a+bc(a+b+c)=0
(a+b)[ab+bc+ca+c2abc(a+b+c)]=0(a+b)[ab+bc+ca+c2abc(a+b+c)]=0
(a+b)(b+c)(c+a)=0(a+b)(b+c)(c+a)=0
⇔ a=−b
⇔ b=−c
⇔ c=−a
Thay vào P từng cái rồi tính tiếp nhé
Tính giá trị biểu thức \(A\left(x\right)=x+x^2+x^3+...+x^{2020}+x^{2021}\) tại \(x=\dfrac{1}{2^{2022}}\)
Tính giá trị của biểu thức sau: B= \(\dfrac{tan\left(\dfrac{23\pi}{2}+x\right).sin\left(2022\pi-x\right).cos\left(x-2021\pi\right)}{cos\left(\dfrac{2021\pi}{2}-x\right).sin\left(x+2023\pi\right)}\)
\(=\dfrac{tan\left(\dfrac{pi}{2}+x\right)\cdot sin\left(-x\right)\cdot cos\left(x-pi\right)}{cos\left(\dfrac{pi}{2}-x\right)\cdot sin\left(x+pi\right)}\)
\(=\dfrac{-cotx\cdot sin\left(-x\right)\cdot\left(-cosx\right)}{sinx\cdot-sinx}\)
\(=\dfrac{cotx\cdot sinx\left(-1\right)\cdot cosx}{-sinx\cdot sinx}=\dfrac{\dfrac{cosx}{sinx}\cdot cosx}{sinx}=\dfrac{cos^2x}{sin^2x}=cot^2x\)
Bài 1: a)Tìm giá trị lớn nhất của biểu thức:
M = 2022 - |x - 9|
b)Tìm giá trị nhỏ nhất của biểu thức:
N = |x - 2021| - (- 2022)
a) \(M=2022-\left|x-9\right|\le2022\)
\(maxM=2022\Leftrightarrow x=9\)
b) \(N=\left|x-2021\right|+2022\ge2022\)
\(minN=2022\Leftrightarrow x=2021\)
Cho biểu thức A=(x+5)^2022+|y-2021|+2022.Tìm giá trị nhỏ nhất của A.
A = (x+5)2022 + | y - 2021| + 2022
vì ( x+5)2022 \(\ge\) 0;
|y-2021| \(\ge\) 0
2022 = 2022
Cộng vế với vế ta được : A = (x+5)2022+|y-2021|+2022\(\ge\) 2022
Vậy A(min) = 2022 dấu bằng xảy ra khi : \(\left\{{}\begin{matrix}x+5=0\\y-2021=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-5\\y=2021\end{matrix}\right.\)
Tính giá trị của biểu thức: A(x)=x+x^2+x^3+...+x^2020+x^2021 tại x=1/2^2022
A(1/2^2022)=1/2^2022+1/2^4044+...+1/2^(2022^2021)
=>2^2022*A=1+1/2^2022+...+1/2^(2022^2020)
=>A*(2^2022-1)=1-1/2^(2022^2021)
=>\(A=\dfrac{2^{2022^{2021}}-1}{2^{2022}-1}\)
Bài 2. Tính giá trị của biểu thức sau với a =1;b = 0
a) C = (2022 x a + 2022 x b) −2021 x b
b) D = (999 x a −99 x b) + 201 x (a −b)
a/Thay a = 1; b = 0 vào biểu thức C, ta có:
\(C=\left(2022\times1+2022\times0\right)-2021\times0\)
\(=\left(2022+0\right)-0\)
\(=2022\)
b/Thay a = 1; b = 0 vào biểu thức D, ta có:
\(D=\left(999\times1-99\times0\right)+201\times\left(1-0\right)\)
\(=\left(999-0\right)+201\times1\)
\(=999+201\)
\(=1200\)
#deathnote