Chứng minh đẳng thức sau với \(b\ge0;a\ge\sqrt{b}\)
\(\sqrt{a+\sqrt{b}}\mp\sqrt{a-\sqrt{b}}=\sqrt{2\left(a\mp\sqrt{a^2-b}\right)}\)
Chứng minh bất đẳng thức sau:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge18ab\) \(\left(a,b\ge0\right)\)
Áp dụng BĐT cosi:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)
Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)
Chứng minh bất đẳng thức sau :
\(e^x\ge1+x\) với mọi \(x\ge0\)
Xét hàm số \(f\left(x\right)=e^x-1-x\) với \(x\ge0\)
Ta có : \(f'\left(x\right)=e^x-1\ge0\) với mọi \(x\ge0\)
và : \(f'\left(x\right)=0\Leftrightarrow x=0\)
\(\Rightarrow f\left(x\right)\) đồng biến với \(x\ge0\) nên với \(x\ge0\Leftrightarrow f\left(x\right)\ge f\left(0\right)=0\)
hay \(e^x-1-x\ge0\) với mọi \(x\ge0\)Cho\(a\ge0,b\ge0\) Chứng minh bất đẳng thức Cauchy : \(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a - 2√ab + b ≥ 0
<=> a + b ≥ 2√ab
<=> (a + b)/2 ≥ √ab
dau "=" xay ra khi √a - √b = 0 <=> a = b
BĐT tương đương :
\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Vậy ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Ta có :
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( với mọi a , b )
Vậy ..............
Chứng minh bất đẳng thức sau :
\(\log_ab\ge\log_{a+c}\left(b+c\right)\) với \(1< a\le b\) và \(c\ge0\)
Ta có :
\(\log_ab\ge\log_{a+c}\left(b+c\right)\Leftrightarrow\log_ab-1\ge\log_{a+c}\left(b+c\right)-1\)
\(\Leftrightarrow\log_a\frac{b}{a}\ge\log_{a+c}\frac{b+c}{a+c}\)
Với \(1< a\le b\) và \(c\ge0\Rightarrow\frac{b}{a}\ge\frac{b+c}{a+c}\ge1\) nên \(\log_a\frac{b}{a}\ge\log_a\frac{b+c}{a+c}\) (*)
Mặt khác, ta được : \(\log_a\frac{b+c}{a+c}\ge\log_{a+c}\frac{b+c}{a+c}\) (**)
Từ (*) và (**) \(\Rightarrow\log_ab\ge\log_{a+c}\left(b+c\right)\)
Dấu "=" xảy ra khi c = 0 hoặc a = b
Chứng minh bất đẳng thức:
\(a^2+ab+b^2\ge0\)
\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3b^2}{4}\ge0\)
Dấu "=" xảy ra khi và chỉ khi a = b = 0
chứng minh hằng đẳng thức sau với b\(\ge0\), a\(\ge\sqrt{b}\) :
\(\sqrt{a\pm\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}\)
Với b\(\ge\)0, a\(\ge\)\(\sqrt{b}\) ta bình phương 2 vế lên có:
\(\sqrt{a\pm \sqrt{b}}^2\)=\((\sqrt{\dfrac{\sqrt{a+\sqrt{a^2-b}}}{2}}\)\pm \(\sqrt{\dfrac{\sqrt{a-\sqrt{a^2-b}}}{2}})^2\)
Xét vế trái ta có:
\(\sqrt{(a\pm \sqrt{b})^2}\)=\(a\pm \sqrt{b})
Bình phương vế phải của đẳng thức ta đc :
\(\frac{a+\sqrt{a^2-b}}{2}+\frac{a-\sqrt{a^2-b}}{2}\pm2\sqrt{\frac{a+\sqrt{a^2-b}}{2}\cdot\frac{a-\sqrt{a^2-b}}{2}}\)
\(=a\pm2\sqrt{\frac{a^2-\left(a^2-b\right)}{4}}\)
\(=a\pm2\sqrt{\frac{b}{4}}=a\pm\sqrt{b}\)
=> đpcm
Chứng minh bất đẳng thức sau :
\(e^x\ge1+x+\frac{x^2}{2}+.....+\frac{x^n}{n!}\) với mọi \(x\ge0;n\in N\)
Xét hàm số : \(f_n\left(x\right)=e^x-1-x-\frac{x^2}{2}-.......-\frac{x^n}{n!}\)
Ta sẽ chứng minh \(f_n\left(x\right)\ge0\) (*) với mọi \(x\ge;n\in N\)
* Với \(n=1:f_1\left(x\right)=e^x-1-x\Rightarrow f_1'\left(x\right)=e^x-1\ge0\) và \(f'\left(x\right)=0\) khi x = 0
\(\Rightarrow\) Hàm số \(f_1\left(x\right)\) đồng biến với \(x\ge0\Rightarrow f_1\left(x\right)\ge f_1\left(0\right)=0\)
Vậy (*) đúng với n = 1
* Giả sử (*) đúng với n = k hay \(f_k\left(x\right)\ge0\), ta cần chứng minh (*) đúng với \(n=k+1\) hay \(f_{k+1}9x=e^x-1-x-\frac{x^2}{2}-...-\frac{x^k}{k!}-\frac{x^{k+1}}{\left(k+1\right)!}\ge0\)
Thật vậy :
\(f_{k+1}'\left(x\right)=e^x-1-x-\frac{x^k}{k!}=f_k\left(x\right)\ge0\) (theo giả thiết quy nạp và \(f'_{k+1}\left(0\right)\ge f_{k+1}\left(0\right)=0\)khi \(x=0\)
\(\Rightarrow\) hàm số \(f_{k+1}\left(x\right)\) đồng biến với mọi \(x\ge0\Rightarrow f_{k+1}\left(x\right)\ge f_{k+1}\left(0\right)=0\) Vậy (*) đúng với n = k+1
Theo phương pháp quy nạp \(\Rightarrow e^x\ge1+x+\frac{x^2}{2}+..+\frac{x^n}{n!}\) với mọi \(x\ge0;n\in N\)
chứng minh bất đẳng thức: \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2\ge0\)
Lời giải:
BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)
Đặt \(a^2+ab+ac=t\)
BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)
Luôn đúng vì bình phương của một số thực luôn là số không âm
Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\) và \(bc=0\)
Chứng minh bất đẳng thức :
\(\log_ab\ge\log_{a+c}b\) với \(a,b>1\) và \(c\ge0\)
Vì \(a,b>1\) và \(c\ge0\Rightarrow0< \log_ba\le\log_b\left(a+c\right)\)
\(\Rightarrow\frac{1}{\log_ba}\ge\frac{1}{\log_b\left(a+c\right)}\Leftrightarrow\log_ab\ge\log_{a+c}b\)
\(\Rightarrow\) điều phải chứng minh