Cho hình chữ nhật ABCD cho tâm I
a) Biết AB=6;AD=8.Tính độ dài đường chéo
b) Biết góc ABD gấp 3 lần góc ADB.Tính góc nhọn hộp hiữa của hai đường chéo
cho hình chữ nhật ABCD có AD=1/2 AB=a, I là trọng tâm của tam giác ABD
CM: vecto IA + vecto IB + vecto IC = vecto DC
Cho hình thôi ABCD tâm I. Hãy cho biết số khẳng định đúng trong các khẳng định sau?
a. vectơ AB = vectơ BC
b. vectơ AB = vectơ DC
c. vectơ IA = vectơ IO
d. vectơ IB = vectơ IA
e. |vectơ AB| = |vectơ BC|
f. 2|vectơ IA| = |vectơ BD|
A. 3
B. 4
C. 5
D. 6
Cho hình chữ nhật ABCD, AB = 2a, AD = a
Tìm I sao cho IA^2 + IB^2 + ID^2 - 3IC^2 = 10a^2
Cho hình chữ nhật ABCD. Biết AB=3cm, AD=4cm.Chứng minh 4 điểm ABCD cùng thuộc 1 đường tròn, tìm tâm, tính bán kính của đường tròn đó.
Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
Do đó: ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc 1 đường tròn
Tâm là trung điểm của BD
Bán kính là \(\dfrac{BD}{2}\)
Cho hình chữ nhật ABCD có tâm O. Biết 5 , 12 . AB a AD a a. Chứng minh rằng: AC AB OC OD b. Chứng minh rằng: AB AD BC CD
1,Cho hình chữ nhật ABCD, biết AB = 8 cm, BC = 6 cm. Vẽ đường cao AH của ∆ADB. Khi đó tỉ số diện tích ∆ADB và ∆HDA
2,Cho hình chữ nhật ABCD, biết AB = 8 cm, BC = 6 cm. Vẽ đường cao AH của ∆ADB. Khi đó độ dài của đoạn thẳng BH là
Bài 1:
Xét tam giác $DHA$ và $DAB$ có:
$\widehat{D}$ chung
$\widehat{DHA}=\widehat{DAB}=90^0$
$\Rightarrow \triangle DHA\sim \triangle DAB$ (g.g)
$\Rightarrow \frac{DH}{DA}=\frac{DA}{DB}\Rightarrow DA^2=DH.DB(1)$
Tương tự: $\triangle BHA\sim \triangle BAD$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BD}\Rightarrow AB^2=BH.BD(2)$
Từ $(1);(2)\Rightarrow (\frac{AD}{AB})^2=\frac{DH}{BH}$
$\Rightarrow \frac{DH}{BH}=(\frac{6}{8})^2=\frac{9}{16}$
$\Rightarrow \frac{DH}{BD}=\frac{9}{25}$
\(\frac{S_{ADB}}{S_{HDA}}=\frac{AH.BD}{AH.HD}=\frac{BD}{HD}=\frac{25}{9}\)
Bài 2:
Theo kết quả bài 1, ta có $\frac{DH}{DB}=\frac{9}{25}$
Mà $DB=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10$ (cm) theo định lý Pitago
$\Rightarrow DH=\frac{9}{25}.DB=\frac{9}{25}.10=3,6$ (cm)
$BH=BD-DH=10-3,6=6,4$ (cm)
cho hình vẽ ABCD là hình chữ nhật . AB = 4 cm các đường trong tâm A và tâm D cùng bán kính r= AB cắt cạnh AD tại G và E.
a)so sánh diện tích hình 1 và 2 neeud biết diện tích hình chữ nhật băng nửa diện tích tích hình tròn tâm A bán kính r
b) tính độ dài đoạn BG
k cho mình rồi mình gửi cho
Cho 1 điểm I nằm trong hình chữ nhật ABCD biết: IA=13cm; IB=8cm; IC=4cm. Hỏi ID=?
Trong mặt phẳng hệ tọa độ Oxy , cho hình chữ nhật ABCD tâm O. Biết phương trình đường thẳng AB:x--y+5=0 và trung điểm M của cạnh BC thuộc đường thẳng x+3y-6=0, xác định tọa độ các đỉnh của hình chữ nhật ABCD
Phương trình đường thẳng qua O và song song AB có dạng:
Tọa độ M là nghiệm của hệ:
Phương trình đường thẳng BC qua M, nhận là 1 vtpt có dạng:
Tọa độ B là nghiệm của hệ:
M là trung điểm BC tọa độ C
O là trung điểm AC tọa độ A
O là trung điểm BD