Cho hình chóp S.abcd có đáy abcd là hình thang vuông tại A và D ; AB=AD=2a , CD=a . Góc giữa 2 mặt phẳng ( sbc) và ( abcd) bằng 60 độ . Gọi I là trung điểm của cạnh AD . Biết 2 mặt phẳng ( SBI) và ( SCI) cùng vuông góc với mặt đáy . Tính thể tích khối chóp SABCD theo a
( các thầy giải giúp e với ạ :( bài này phải giải theo phương pháp toạ độ nhưng e kb làm )
cho hình chóp SABCD đáy ABCD là hình thang vuông tại A và B, AB=AC=a, AD=2a, SA vông góc với mp(ABCD), SA=2a. M là 1 điểm thuộc AB, mp(α) qua M và vuông góc với AB
a) Tìm thiết diện (α) với hình chóp SABCD. Thiết diện là hình gì?
b) Đặt AM =x (0<x<a). Tính diện tích thiết diện
1) Cho hình lăng trụ ABC.A'B'C' có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB=a, AC=a√3. Hình chiếu vuông góc của đỉnh A' lên (ABC) là trung điểm của cạnh BC. Tính khoảng cách giữa AA' và B'C'
2) Trong mp với hệ tọa độ Oxy, cho hình chữ nhật ABCD, AB=2BC. Các điểm M,N lần lượt thuộc cạnh BC,CD thỏa mãn BM=2/3 BC, DN=1/2 CD. Biết rằng M(2,3), và phương trình đường thẳng AN: 2x-y+3=0. Tìm tọa độ điểm A?
Trong không gian Oxy cho hình thang cân ABCD, đáy nhỏ là AB, đáy lớn là CD. Gọi I là giao điểm của hai đường chéo AC và BD. I(0;4); A(3;1). Đường tròn ngoại tiếp tam giác AID có phương trình (x-1)2+(y-2)2=5. điểm M(1;5) thuộc đường thẳng BC. Tìm tọa độ C.
Cho tứ diện ABCD có ABC là tam giác đều, ∆DBC vuông cân tại D. Biết AB = 2a, AD = a\(\sqrt{7}\). Tính góc giữa (ABC) và (DBC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD= 3a/2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính khoảng cách từ A đến mặt phẳng (SBD), bằng phương pháp tọa độ.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD= 3a/2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính khoảng cách từ A đến mặt phẳng (SBD), bằng phương pháp tọa độ.
1.cho khối lăng trụ tam giác ABC.A'B'C'. Gọi I,J,K lần lượt là trung điểm của AB,AA',B'C' . Mặt phẳng (IJK) chia khối lăng trụ thành 2 phần.Tính tỉ số thể tích của 2 phần đó.
2.Cho khối tứ diện ABCD có cạnh AB>1,các cạnh còn lại có độ dài không lớn hơn 1. Gọi V là thể tích của khối tứ diện. Tìm giá trị lớn nhất của V.
Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD, lấy điểm M trên đoạn BC, đường thẳng AM có phương trình x + 3y -5 = 0 , N trên đoạn CD sao cho góc BMA = AMN. Tìm tọa độ điểm A biết AN qua K(1;-2)