Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vy Au

1) Cho hình lăng trụ ABC.A'B'C' có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB=a, AC=a√3. Hình chiếu vuông góc của đỉnh A' lên (ABC) là trung điểm của cạnh BC. Tính khoảng cách giữa AA' và B'C'

2) Trong mp với hệ tọa độ Oxy, cho hình chữ nhật ABCD, AB=2BC. Các điểm M,N lần lượt thuộc cạnh BC,CD thỏa mãn BM=2/3 BC, DN=1/2 CD. Biết rằng M(2,3), và phương trình đường thẳng AN: 2x-y+3=0. Tìm tọa độ điểm A?

Quốc Đạt
31 tháng 5 2016 lúc 19:37

1) * Vẽ hình: vẽ cẩn thận không sai. 
* Tính thể tích A’.ABC: 
- Gọi H là trung điểm của BC. H là hình chiếu vuông góc của A’ lên (ABC) nên AH’ là đường cao của khối chóp A.ABC 
- Diện tích tam giác ABC là dt(ABC)= AB.AC/2= (a²√3 )/2 
- Tam giác ABC vuông tại A ⇒ AH=BC/2 = √(AB² + BC²) = a 
- Tam giác A’AH vuông tại H ⇒ A’H = √(A’A² - AH²) = a√3 
- Thể tích khối chóp A’.ABC là V1 = dt(ABC).A’H/3 = a^3/2 
a) * Tính cos (A’A, B’C’): 
- AA’// BB’ và B’C’ // BC ⇒ cos (A’A, B’C’) = cos (BB’, BC) 
- Ta đi tính cos ∠B’BC: 
+ Ta có A’H ⊥ (ABC)//(A’B’C’) ⇒ A’H ⊥ (A’B’C’)⊃A’B’ 
⇒A’H ⊥ A’B’nên tam giác A’HB’ vuông tại A’ 
⇒ B’H² = A’H² + A’B’² = a² + (a√3 )² =2a² 
+ Áp dụng hệ quả định lý cos trong tam giác B’BH, ta có: 
cos∠B’BC = (B’B² + BH² - B’H² ) / (2 BB’.BH) = ¼. 
Vậy cos (A’A, B’C’) = cos (BB’, BC) = cos∠B’BC = 1/4 

Vy Au
31 tháng 5 2016 lúc 19:51

Cái này là tính góc. Tính khoảng cách thì làm sao ạ??

Quốc Đạt
31 tháng 5 2016 lúc 19:52

cái nào zậy

Vy Au
31 tháng 5 2016 lúc 20:04

Câu 1 á. Tính khoảng cách giữa 2 đường thẳng AA' và B'C' chứ k phải tính góc


Các câu hỏi tương tự
Đỗ Đức Huy
Xem chi tiết
ngocanh nguyễn thị ngọc...
Xem chi tiết
Thomas Edison
Xem chi tiết
Huỳnh Cẩm Tiên
Xem chi tiết
trang trương
Xem chi tiết
Slice Peace
Xem chi tiết
Ngọc Ánh
Xem chi tiết
T Huyên
Xem chi tiết
Huyền
Xem chi tiết