Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
Do đó: ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc 1 đường tròn
Tâm là trung điểm của BD
Bán kính là \(\dfrac{BD}{2}\)
Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
Do đó: ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc 1 đường tròn
Tâm là trung điểm của BD
Bán kính là \(\dfrac{BD}{2}\)
Cho hình chữ nhật ABCD có AD = 12 cn, CD = 16cm. Chứng minh rằng bốn điểm ABCD thuộc cùng một đường tròn. Tính bán kính của đường tròn đó ?
Cho hình chữ nhật ABCD có AB = 12 cm, BC = 5cm. Chứng minh rằng bốn điểm A, B, C, D thuộc cùng một đường tròn. Tính bán kính của đường tròn đó ?
Cho hình thang cân ABCD (AD//BC). Biết AB=12cm, AC= 16cm và BC= 20cm. Chứng minh rằng 4 điểm A, B, C, D thuộc một đường tròn, tính bán kính của đường tròn đó
Cho hình vuông ABCD
a) Chứng minh rằng bốn đỉnh của hình vuông cùng nằm trên một đường tròn. Hãy chỉ ra vị trí của tâm đường tròn đó ?
b) Tính bán kính của đường tròn đó, biết cạnh của hình vuông bằng 2 dm ?
1. Cho tam giác ABC, góc A = 90 độ, có AB = 5 cm, AC = 12 cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
2. Cho hình thang cân ABCD (AD//BC). Biết AB = 12 cm, AC = 16 cm và BC = 20 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
Bài 1: Cho hình chữ nhật ABCD.
a) Chứng minh rằng bốn điểm A, B, C và D cùng thuộc một đường tròn.
b) Cho AB = 10cm và BC = 6cm. Tính bán kính của đường tròn trên.
cho hình thang ABCD có BD ⊥AD, AB // CD. gọi I là trung điểm AB.
a) c/m: CA ⊥BC
b) c/m: A, B, C, D cùng thuộc 1 đường tròn và xác định tâm đường tròn đó
Cho tứ giác ABCD có A = C = 90 độ . Chứng minh A , B , C , D cùng nằm trên một đường tròn . Xác định tâm và bán kính của đường tròn đó
Bài 1.3: Cho hình vuông ABCD cạnh a.
a) Chứng minh: bốn đỉnh A, B, C và D của hình vuông trên cùng nằm trên một đường tròn.
b) Xác định tâm và bán kính của đường tròn đó.