Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngoclinhnguyen
Xem chi tiết
Akai Haruma
27 tháng 2 2021 lúc 13:54

Lời giải:

$p=\frac{AB+BC+AC}{2}=\frac{\sqrt{6}+\sqrt{3}+3}{2}$

Theo công thức Heron:

$S_{ABC}=\sqrt{p(p-AB)(p-BC)(p-AC)}=\frac{3+\sqrt{3}}{2}$

Bán kính đường tròn ngoại tiếp:

$R=\frac{AB.BC.AC}{4S}=\sqrt{2}$ (đvđd)

Nguyễn Thùy Chi
Xem chi tiết
huy phan
Xem chi tiết
huy phan
16 tháng 8 2021 lúc 13:53

Ai biết là, giải giúp mình ạ, đang gấp

Bao Gia
Xem chi tiết
Hoàng Thanh Bình
Xem chi tiết
Nguyễn Thu Vân
Xem chi tiết
Không Bít
Xem chi tiết
Kudo Shinichi
30 tháng 9 2019 lúc 16:24

A B C D E F

Đặt AB = a  ; AC = b ;  AD = c . Kẻ DE vuông góc AC ( \(E\in AB;F\in AC\) )
Ta có tứ giác AFDE là hình chữ nhật do \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\) , AD phân giác trong của \(\widehat{EAF}\) nên \(\widehat{AFDE}\) là hình vuông . Suy ra 

\(DE=DF=\frac{AD\sqrt{2}}{2}=\frac{C\sqrt{2}}{2}\) . Ta có :

\(S_{DAB}+S_{DAC}=S_{ABC}\)

\(\Leftrightarrow\frac{1}{2}AB.DE+\frac{1}{2}DF.AC=\frac{1}{2}AC.AB\)

\(\Leftrightarrow\frac{c\sqrt{2}}{2}a+\frac{c\sqrt{2}}{2}b=ab\)

\(\Leftrightarrow\frac{\sqrt{2}}{c}=\frac{1}{a}+\frac{1}{b}\) . Hay \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)

Chúc bạn học tốt !!!

Nguyễn Khánh Toàn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2022 lúc 21:47

1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)

CH=5,4(cm)

2: \(BC=\sqrt{2+2}=2\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)

\(BH=CH=AH=1\left(cm\right)\)

Trang Vũ
Xem chi tiết
Mỡ Mỡ
Xem chi tiết