Lời giải:
$p=\frac{AB+BC+AC}{2}=\frac{\sqrt{6}+\sqrt{3}+3}{2}$
Theo công thức Heron:
$S_{ABC}=\sqrt{p(p-AB)(p-BC)(p-AC)}=\frac{3+\sqrt{3}}{2}$
Bán kính đường tròn ngoại tiếp:
$R=\frac{AB.BC.AC}{4S}=\sqrt{2}$ (đvđd)
Lời giải:
$p=\frac{AB+BC+AC}{2}=\frac{\sqrt{6}+\sqrt{3}+3}{2}$
Theo công thức Heron:
$S_{ABC}=\sqrt{p(p-AB)(p-BC)(p-AC)}=\frac{3+\sqrt{3}}{2}$
Bán kính đường tròn ngoại tiếp:
$R=\frac{AB.BC.AC}{4S}=\sqrt{2}$ (đvđd)
Cho tam giác ABC, BC=10. Gọi I là đường tròn tâm I thuộc BC và tiếp xúc vs cạnh AB, AC. Biết AI=3, 2IB=3IC
Tính độ dài các cạnh tam giác ABC
Cho tam giác ABC có 3 góc nhọn và \(\widehat{ABC}>\widehat{ACB}\). Đường phân giác trong của góc BAC cắt đoạn BC tại D. Gọi E,F lần lượt là hình chiếu vuông góc của D trên AB và AC. K là giao điểm của CE và BF. Đường thẳng BF cắt đường tròn ngoại tiếp tam giác AEK tại điểm thứ hai là H ( H khác K). Gọi I là giao điểm của hai đường thẳng AK và BC. CM
a) \(IC.EB=IB.FC\)
b) \(DH\perp BF\)
cho tam giác ABC có ác cạnh BC = a , AC =b , AB =c , gọi I là tâm đường tròn nội tiếp tam giác ABC
a) chứng minh rằng : ( b2 -c2 )cos A = a( c.cosC -b.cosB)
cho tam giác ABC biết \(\dfrac{sinA}{sinB}=\sqrt{3}\) và BC=2.Tính AC
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R, H là trực tâm của tam giác. Chứng minh:
\(OH^2=3R^2-2R^2\left(\cos2A+\cos2B+\cos2C\right)\)
1/ Cho tam giác ABC có AB = 2, BC = 3 và ABC=60
Tính chu vi và diện tích của tam giác ABC
Cho tam giác ABC vuông tại A có AB=a, AC=a\(\sqrt{3}\) và AM là trung tuyến. Tích vô hướng \(\overrightarrow{BA}.\overrightarrow{AM}\)