cho tam giác ABC có ác cạnh BC = a , AC =b , AB =c , gọi I là tâm đường tròn nội tiếp tam giác ABC
a) chứng minh rằng : ( b2 -c2 )cos A = a( c.cosC -b.cosB)
Cho tứ giác ABCD, 2 đường chéo cắt nhau tại O. Gọi H, K là trực tâm của tam giác ABO và CDO. I, J là trung điểm AD, BC. Chứng minh HK vuông góc với IJ
Cho tam giác ABC có BC = \(\sqrt{6}\) , AC = 2 và AB = \(\sqrt{3}+1\) và . Bán kính đường tròn ngoại tiếp tam giác ABC bằng:
Cho tam giác đều ABC nội tiếp (O; R). M là điểm tùy ý trên đường tròn. Tìm giá trị lớn nhất của
S = MA2 + 2MB2 - 3MC2 theo R
Cho tam giác ABC, BC=10. Gọi I là đường tròn tâm I thuộc BC và tiếp xúc vs cạnh AB, AC. Biết AI=3, 2IB=3IC
Tính độ dài các cạnh tam giác ABC
Cho 3 điểm A (-1;1), B(3;1) C(2;4)
tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác abc
Cho tam giác ABC cố định và có trọng tâm G . Điểm M thay đổi trong mặt phẳng thoả mãn MA2+MB2+MC2_12AB2=GA2+GB2+GC2.Quỹ tích điểm M là một đường tròn có bán kính bằng :
A.12AB2 B.4AB2 C.4AB D.2AB