Cho tam giác ABC có góc A = 60 độ, phân giác AD. CMR :
\(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{3}}{AD}\)
Cho tam giác ABC vuông tại A có đường phân giác AD. Gọi AE là tia phân giác
góc ngoài của tam giác ABC tại đỉnh A, nó cắt BC ở E. Chứng minh: \(\dfrac{1}{AB^2}\) +\(\dfrac{1}{AC^2}\)= \(\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
Cho tam giác ABC vuông tại A , có AB=3cm , AC=4cm , đường cao AH (H\(\in\)BC )
1)Tính BC ,AH
b) Kẻ đường phân giác AI của góc BAC (I\(\in\)BC) .Tính BI , CI
c) Chứng minh : \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AI}\)
Cho tam giác ABC có góc A = 60 độ. Vẽ đường phân giác AD. Chứng minh rằng: 1/AB + 1 AC = √3/AD
Cho tam giác ABC vuông tại A (AB < AC) , đường cao AH.
a) AB=6 cm, cos ABC = 3/5 . Tính BC,AC,AH.
b) Kẻ HD vuông góc với AB, HE vuông góc với AC . c/m: AD.AB=AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. c/m: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
cho tam giác ABC không cân, BD và CE là hai đường phân giác trong của góc B và góc C cắt nhau tại I sao cho: ID=IE
a) Tính góc BAC
b) chứng minh: \(\dfrac{3}{AB+BC+CA}=\dfrac{1}{AB+BC}+\dfrac{1}{BC+AC}\)
Cho tam giác ABC, ^A=1V, phân giác AD (D∈BC). Vẽ DH⊥AB
CMR: \(\dfrac{1}{AD}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
Cho tam giác ABC, có góc A=60 độ, phân giác AD. AB=2, AC=4. Tính AD
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab