Cho \(\Delta ABC;AB=AC.\) Tia phân giác của góc A cắt BC tại H (H thuộc BC)
a) Chứng minh:\(\Delta ABH=\Delta ACH\)
b) Chứng minh : AH\(\perp\)BC
Bài 8: Cho ΔABC có \(sinB=2sinA.cosC\). CMR : ΔABC cân tại B
Bài 9 : Cho ΔABC có S= p(p-a) . CMR : ΔABC vuông tại A
Bài 10: Cho ΔABC , CM nếu \(5m_a^2=m_b^2+m_c^2\) thì ΔABC vuông tại A
Bài 11:Cho ΔABC có sin A(cosB+cosC) =sinB + sin C . CMR : ΔABC vuông
a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) có đồng dạng với tam giác \(ABC\) không? Tỉ số đồng dạng là bao nhiêu?
b) Cho tam giác \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng \(k\) thì \(\Delta ABC\backsim\Delta A'B'C'\) theo tỉ số nào?
a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Vì hai tam giác bằng nhau có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.
Khi đó, \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 1\end{array} \right.\). Vậy \(\Delta A'B'C'\backsim\Delta ABC\) và tỉ số đồng dạng là 1.
b) Vì \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng là \(k\) nên tỉ số đồng dạng là: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\).
Khi đó, \(\Delta ABC\backsim\Delta A'B'C'\) đồng dạng với tỉ số đồng dạng là: \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{k}\).
Vậy \(\Delta ABC\backsim\Delta A'B'C'\)theo tỉ số \(\frac{1}{k}\).
Cho tam giác ABC và DEF như hình 4.18. Trong các khẳng định sau, khẳng định nào đúng?
(1)\(\Delta ABC = \Delta DEF\)
(2) \(\Delta ACB = \Delta EDF\)
(3) \(\Delta BAC = \Delta DFE\)
(4)\(\Delta CAB = \Delta DEF\)
Xét \(\Delta ACB\) và \(\Delta EDF\) có:
\(\begin{array}{l}AC = ED\\AB = EF\\CB = DF\end{array}\)
\(\Rightarrow \Delta ACB = \Delta EDF\)(c.c.c)
Xét \(\Delta CAB\) và \(\Delta DEF\) có:
\(\begin{array}{l}CA = DE\\AB = EF\\CB = DF\end{array}\)
\(\Rightarrow \Delta CAB = \Delta DEF\)(c.c.c)
Vậy khẳng định (2) và (4) đúng.
Chú ý: Khi \(\Delta ABC = \Delta DEF\), ta cũng có thể viết \(\Delta BAC = \Delta EDF\) hay \(\Delta CBA = \Delta FED\);....
Cho \(\Delta ABC\) vuông tại \(A\), \(AH\) là đường cao
\(a\)) Chứng minh \(\Delta HBA\) đồng dạng \(\Delta ABC\)
\(b\)) Chứng minh \(\Delta AH^2=BH.HC\)
a)xét ΔABC và ΔHBA ta có
\(\widehat{BAH}=\widehat{BHA}=90^o\)
\(\widehat{B}chung\)
=>ΔABC ∼ ΔHBA(g.g)(1)
b)xét ΔABC và ΔAHC ta có
\(\widehat{BAC}=\widehat{AHC}=90^o\)
\(\widehat{B}chung\)
->ΔABC ∼ ΔAHC(g.g)(2)
từ (1) và (2)=>ΔHBA và ΔAHC
->\(\dfrac{AH}{BH}=\dfrac{HC}{AH}\)
=>\(AH^2=BH.HC\)
Cho \(\Delta ABC\) nhọn (\(AB< AC\)) có hai đường cao \(BM,CN\) (\(M\varepsilon AC;N\varepsilon AB\))
\(a\)) CM: \(\Delta AMB\) đồng dạng \(\Delta ANC\) rồi suy ra \(AM.AC=AN.AB\)
b) CM: \(\Delta AMN\) đồng dạng \(\Delta ABC\) rồi suy ra\(AMN=ABC\)
a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có
góc A chung
=>ΔAMB đồng dạng vơi ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN; AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC
cho \({\rm{\Delta ABC = \Delta PQR}}\) biết AB = 8cm; BC = 10cm. Chu vi \({\rm{\Delta ABC}}\) là 25cm. Độ dài cạnh PR là:
Cho ΔABC \(\backsim\) ΔMNP, khẳng định nào sau đây không đúng?
a) ΔMNP \(\backsim\) ΔABC
b) ΔBCA \(\backsim\) ΔNPM
c) ΔCAB \(\backsim\) ΔPNM
d) ΔACB \(\backsim\) ΔMNP
Khẳng định d) là khẳng định không đúng
=> ΔACB \(\backsim\) ΔMPN
Cho \(\Delta\)ABC vuông tại A (AB<AC),AH là đường cao.Chứng minh:
a)Chứng minh:\(\Delta\)ABC đồng dạng \(\Delta\)HBA ;\(^{AB^2}\)=BH.BC
b)Trên tia AB lấy D sao cho B là trung điểm DA.Chứng minh:\(\Delta\)BDH đồng dạng \(\Delta\)BCD
c)Kẻ AK\(\perp\)DH.Chứng minh:CH là phân giác của góc DCK
Bài 1: Cho tam giác ABC có AD, BE, CF cắt tại O. CMR: \(S_{\Delta AOE}=S_{\Delta DEC}=S_{\Delta OCD}=S_{\Delta OBD}=S_{\Delta OBF}=S_{\Delta OFA}=\dfrac{1}{6}S_{\Delta ABC}\)
Bài 2: Cho tam giác ABC có \(AM=\dfrac{1}{2}BC\). CMR: tam giác ABC vuông tại A.
Bài 2:
Ta có: AM=1/2BC
nên AM=BM=CM
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{B}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{C}\)
Xét ΔBAC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{MAB}+\widehat{B}+\widehat{MAC}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)
=>\(\widehat{BAC}=90^0\)
hay ΔABC vuông tại A
Cho \(\Delta ABC\) có AB = 12; BC = 15; CA = 18. Gọi I là giao điểm của các đường phân giác trong \(\Delta ABC\), G là trọng tâm trong \(\Delta ABC\) . Tính IG = ?
Gọi M là trung điểm của BC, D là chân đường phân giác kẻ từ A xuống BC
=>A,G,M thẳng hàng và A,I,D thẳng hàng
BM=CM=BC/2=7,5cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/4=CD/6=15/10=1,5
=>BD=6cm
=>MD=1,5cm
IG//DM
=>IG/DM=AI/AD=2/3
=>IG=2/3DM=1cm