Cho tam giác ABC có \(\widehat{B}=\widehat{C}\). Tia phân giác của góc A cắt BC tại D.
Chứng minh rằng :
DB = DC; AB = AC
Cho tam giác ABC, \(\widehat{A}=90^0;BC=2AB\). Tia phân giác của góc B cắt cạnh AC tại D.
a/ Chứng minh rằng DB=DC
b/ Tính góc B, góc C của tam giác ABC
a/ Gọi E là trung điểm của BC
Ta có: \(BC=2AB\left(gt\right)\)
\(\Rightarrow AB=\frac{1}{2}BC\) (1)
Lại có E là trung điểm của BC
\(\Rightarrow BE=EC=\frac{1}{2}BC\) (2)
Từ (1) và (2) \(\Rightarrow AB=BE=EC\)
Xét \(\Delta BDA\) và \(\Delta BDE\) có:
BD chung
\(\widehat{B_1}=\widehat{B_2}\) (do BD là phân giác của \(\widehat{B}\))
AB=BE (cmt)
Suy ra: \(\Delta BDA=\Delta BDE\left(c.g.c\right)\)
Xét \(\Delta BED\) và \(\Delta CED\) có:
\(\widehat{E_1}=\widehat{E_2}=90^0\) ( kề bù và \(\widehat{E_1}=90^0\))
DE chung
BE=EC (cmt)
Suy ra: \(\Delta BED=\Delta CED\left(c.g.c\right)\)
\(\Rightarrow DB=DC\) (hai cạnh tương ứng)
b/ Xét \(\Delta ABC\) có:
\(\widehat{B}+\widehat{C}=90^0\)
Mà: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\) (Do \(\Delta BED=\Delta CED\)) và\(\widehat{B_1}=\widehat{B_2}\)
Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\). Mà: \(\widehat{B_1}+\widehat{B_2}+\widehat{C}=90^0\)
Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}=90^0\div3=30^0\)
Nên: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}=30^0+30^0=60^0\)
Lưu ý: Hình vẽ minh họa phía dưới
Cho tam giác ABC có \(\widehat{B}=\widehat{C}\); tia phân giác của góc A cắt BC tại M. Trên tia đối của tia MA lấy điểm D sao MD = MA.
a) Chứng minh: \(\Delta ABM=\Delta ACM\)
b) Chứng minh: BC vuông góc với AM.
c) Chứng minh: AB // CD .
d) Cho biết, nếu\(\widehat{ACB}=55^o\), tính số đo\(\widehat{MDC}\) .
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
Cho tam giác ABC, góc B > góc C. Đường thẳng chứa tia phân giác góc ngoài tại đỉnh A cắt đường thẳng BC tại N. Tia phân giác trong của góc A cắt BC tại M. Chứng minh \(\widehat{ANC}=\dfrac{\widehat{AMC}-\widehat{AMB}}2\).
cho tam giác abc có góc b= góc a .tia phân giác có góc a cắt bc tại d chứng minh rằng db = dc , ab= ac
Sửa đề: góc b=góc c
Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Suy ra: AB=AC
Ta có: ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh BC
nên D là trung điểm của BC
hay DB=DC
Cho tam giác ABC có \(\widehat{A}=60^o\), kẻ tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB ở E. Qua A kẻ đường thẳng song song với CE, đường thẳng này cắt đường thẳng BC tại F.
a, Chứng minh rằng : \(\widehat{AFC}=\widehat{CAF}\)
b, Chứng minh rằng : \(\widehat{BDC}=\widehat{AEC}\)
Cho tam giác ABC vuông tại A và cạnh BC = 2AB. E là trung điểm của BC. Tia phân giác của \(\widehat{B}\)cắt BC tại D.
a) Chứng minh DB là tia phân giác của \(\widehat{ADE}\)
b) Chứng minh BD = BC
c) Tính \(\widehat{B,}\)\(\widehat{C}\)của tam giác ABC
cho tam giác ABC, các tia phân giác của \(\widehat B \) và \(\widehat C\) cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB ở D, cắt AC tại. Chứng minh DE=DB+CE.
Cho tam giác ABC cân tại A (Hình 16). Tia phân giác của góc B cắt AC tại F, tia phân giác của góc C cắt AB tại E.
a) Chứng minh rẳng \(\widehat {ABF} = \widehat {ACE}\)
b) Chứng minh rằng tam giác AEF cân
c) Gọi I là giao điểm của BF và CE. Chứng minh rằng tam giác IBC và tam giác IEF là những tam giác cân
a) Vì tam giác ABC cân tại A
\( \Rightarrow \widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ABF} = \widehat {ACE}\)
b) Xét \(\Delta ECA\) và \(\Delta FBA\)có:
\(\widehat{A}\) chung
AB = AC
\(\widehat {ABF} = \widehat {ACE}\)
\( \Rightarrow \)\(\Delta ECA\)= \(\Delta FBA\)( g – c – g )
\( \Rightarrow AE = AF và EC = BF\) (2 cạnh tương ứng)
\( \Rightarrow \Delta AEF\) cân tại A
c) Xét tam giác IBC có :
\(\widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ICB} = \widehat {IBC}\)
Do đó, tam giác IBC cân tại I ( 2 góc ở đáy bằng nhau )
\( \Rightarrow IB = IC\)( cạnh tương ứng )
Vì EC = BF ( câu b) và IB = IC
\( \Rightarrow \) EC – IC = BF – BI
\( \Rightarrow \) EI = FI
\( \Rightarrow \Delta IEF\) cân tại I
cho tam giác ABC có B = C . Tia phân giác của góc A cắt BC tại D chứng minh DB = DC, AB = AC
Tam giác ABC có góc B = góc C
=> ABC là tam giác cân (hai góc kề cạnh đáy bằng nhau)
=> AB = AC
Xét hai tam giác BAD và CAD có:
AC = AB (cmt)
góc BAD = góc CAD (AD là phân giác của góc A)
góc B = góc C (gt)
=> tam giác BAD = tam giác CAD (g.c.g)
=> DB = DC
*Vì tam giác ABC co góc B=C
=>tam giác ABC là tam giác cân
=>AB=AC
* Xét hai tam giác ABD và tam giác ADC có:
AB=AC(chứng minh trên)
góc B=góc C(GIẢ THIẾT)
AD là cạnh chung
=>tam giác ABD=ADC(c-g-c)
=>DB=DC(2 cạnh tương ứng)
Xét tam giác ABC , ta có :
\(\widehat{B}\)= \(\widehat{C}\) (giả thuyết)
=> Tam giác ABC cân tại \(\widehat{A}\)
=> AB = AC (tính chất tam giác cân)
Vì tam giác ABC cân tại \(\widehat{A}\)
=> AD là đường phân giác
=> DB = DC