Chứng minh:
(3n+5;9n+14)=1
chứng minh 3n+4 + 3n+2+2n+3+2n+1 chia hết cho 5
3n+4+3n+2 + 2n+3 + 2n+1
= 3n.( 34 + 32) + 2n.( 23+2)
= 3n.90 + 2n.10
= 10.( 3n.9+2n.5)
vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)
Chứng minh rằng
3n+5/3n+4 là phân số tối giản
Gọi \(ƯCLN\left(3n+5;3n+4\right)=d\)
Ta có :
\(3n+5\text{⋮}d\)
\(3n+4\text{⋮}d\)
\(\Rightarrow\left(3n+5\right)-\left(3n+4\right)\text{⋮}d\)
\(1\text{⋮}d\)
\(d\)lớn nhất \(\Rightarrow d=1\)
\(\Rightarrow\frac{3n+5}{3n+4}\)là phân số tối giản
Chứng minh :
\(\frac{1}{\left(3n+2\right)\left(3n+5\right)}=\frac{1}{3}\left(\frac{1}{3n+2}-\frac{1}{3n+5}\right)\)
Quy đồng lên rồi tính bình thường thôi bạn
Chứng minh các đẳng thức sau (với n∈N∗n∈N∗)
a) 2+5+8+...+(3n−1)=n(3n+1)22+5+8+...+(3n−1)=n(3n+1)2;
b) 3+9+27+...+3n=12(3n+1−3)3+9+27+...+3n=12(3n+1−3).
tham khảo:
\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)
Chứng minh đăng thức 2+5+8...+(3n-1)=[n(3n+1)]/2 ;với mọi n thuộc N*
Tui làm theo cách tiểu học, để mai nghĩ xem có cách nào làm "cấp 3" ko
2+3=5; 5+3=8
Số số hạng: \(\dfrac{3n-1-2}{3}+1=n\left(so-hang\right)\)
Tổng: \(\dfrac{\left(3n-1+2\right).n}{2}=\dfrac{n\left(3n+1\right)}{2}\)
chứng minh (2n+5 3n+7)=1
Chứng minh rằng
a) A = n(3n-1) - 3n(n-2) ⋮ 5 (∀n ϵ R)
b) B = n(n+5) - (n-3)(n+2) ⋮ 6 (∀n ∈ Z)
c) C= (n2 + 3n - 1)(n+2) - n3+2 ⋮ 5 (∀n ϵ Z)
a: A=3n^2-n-3n^2+6n=5n chia hết cho 5
b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6
c: =n^3+2n^2+3n^2+6n-n-2-n^3+2
=5n^2+5n
=5(n^2+n) chia hết cho 5
chứng minh 3n+7/2n+5 là phân số tối giản
Gọi d=ƯCLN(3n+7;2n+5)
=>6n+14-6n-15 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Đề sai rồi em, hai số đó không nguyên tố cùng nhau vì có ước chung lớn nhất là 9
Chứng minh 2n + 3 và 3n + 5 nguyên tố cùng nhau
Gọi d=ƯCLN(2n+3;3n+5)
=>\(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
=>\(6n+9-6n-10⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(2n+3;3n+5)=1
=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau