a) Viết phương trình đường thẳng đi qua \(A\left(2;1\right)\)và B\(\left(1;2\right)\)
b) Với giá trị nào của m thì đường thẳng \(y=mx+1\)đi qua giao điểm của hai đường thẳng x=1 và \(y=2x+1.\)
Bài 5. Trong mặt phẳng Oxy, cho điểm A(2;-1) và đường thẳng d : 3x-4y+5=0
a) Viết phương trình đường thẳng đi qua A và vuông góc với d
b) Viết phương trình đường thẳng đi qua A và song song với d.
c) Viết phương trình đường thẳng song song với d và cách A một khoảng bằng 3
Gọi đường thẳng đi qua A là d'.
a) Ta có: \(d'\perp d.\)
\(\Rightarrow\) VTPT của d là VTCP của d'.
Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)
\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)
\(\Rightarrow\) Phương trình đường thẳng d' là:
\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)
b) Ta có: \(d'//d.\)
\(\Rightarrow\) VTPT của d là VTPT của d'.
Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)
\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)
\(\Rightarrow\) Phương trình đường thẳng d' là:
\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)
Cho 2 điểm A(1;-2) ; B(0;4) a. Viết phương trình tham số của đường thẳng đi qua hai điểm A và B B. Viết phương trình tổng quát của đường thẳng đi qua hai điểm A và B
a: vecto AB=(-1;6)
=>VTPT là (6;1)
Phương trình tham số là;
x=1-t và y=-2+6t
b: PTTQ là:
6(x-1)+1(y+2)=0
=>6x-6+y+2=0
=>6x+y-4=0
Cho △ABC biết A(-2;4) B(5;5) C(6;-2)
a) Viết phương trình đường thẳng đi qua C và vuông góc với AB
b) Viết phương trình đường trung tuyến BK
c) Viết phương trình đường tròn tâm B,bán kính AC
d) Viết phương trình đi qua 3 điểm A,B,C
a: vecto AB=(7;1)
=>(d) có VTPT là (7;1)
Phương trình (d) là;
7(x-6)+1(y+2)=0
=>7x+y-40=0
b: Tọa độ K là:
x=(6-2)/2=2 và y=(4-2)/2=1
B(5;5); K(2;1)
vecto BK=(-3;-4)=(3;4)
=>VTPT là (-4;3)
Phương trình BK là:
-4(x-2)+3(y-1)=0
=>-4x+8+3y-3=0
=>-4x+3y+5=0
c: \(AC=\sqrt{\left(6+2\right)^2+\left(-2-4\right)^2}=10\)
Phương trình (C) là:
(x-5)^2+(y-5)^2=10^2=100
a) Viết phương trình đường thẳng đi qua gốc tọa độ O và điểm A(-1;3)
b) Viết phương trình đường thẳng thứ 2 đi qua điểm B(-3;2) và vuông góc đường thẳng OA
c) Viết phương trình đường thẳng thứ 3 đi qua điểm C(1;-2) và ssong song đường thẳng OA
Giúp mình nha, cảm ơn
Viết phương trình đường thẳng \(\Delta\) đi qua M(1;-3) biết \(\Delta\cap Ox=\left\{A\right\}\) và \(\Delta\cap Oy=\left\{B\right\}\) ; \(S_{OAB}\)=2
Phương trình đường thẳng denta có dạng: \(y=k\left(x-1\right)-3=kx-k-3\)
Để denta cắt 2 trục Ox, Oy tạo thành tam giác \(\Rightarrow k\ne\left\{0;-3\right\}\)
Khi đó ta có: \(A\left(\dfrac{k+3}{k};0\right)\) \(\Rightarrow OA=\left|\dfrac{k+3}{k}\right|\)
\(B\left(0;-k-3\right)\Rightarrow OB=\left|k+3\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Leftrightarrow OA.OB=4\)
\(\Leftrightarrow\dfrac{\left(k+3\right)^2}{\left|k\right|}=4\Leftrightarrow\left(k+3\right)^2=4\left|k\right|\)
\(\Rightarrow\left[{}\begin{matrix}k^2+6k+9=4k\\k^2+6k+9=-4k\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}k^2+2k+9=0\left(vn\right)\\k^2+10k+9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=-1\\k=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-x-2\\y=-9x+6\end{matrix}\right.\)
Cho 3 điểm A ( 0; -8 ) , B ( 5/2 ; 2 ) , C ( 1; 7 ) và đường thẳng (d1) có phương trình 3x + 2y = -1
a, Viết phương trình đường thẳng (d2) đi qua hai điểm A và B
b, Viết phương trình đường thẳng (d3) đi qua điểm C và song song với (d1)
Viết phương trình đường thẳng (d) đi qua điểm A\(\left(3;-1\right)\) và song song với đường thẳng (Δ): 2x + 3y - 1 = 0
\(\Delta:2x+3y-1=0.\)
\(\Rightarrow\) VTPT của \(\Delta\) là \(\overrightarrow{n_{\left(\Delta\right)}}=\left(2;3\right).\)
Phương trình đường thẳng \(\left(d\right)\) song song với đường thẳng \(\Delta:2x+3y-1=0.\)
\(\Rightarrow\) VTPT của đường thẳng \(\Delta\) cũng là VTPT của đường thẳng \(\left(d\right).\)
\(\Rightarrow\) VTPT của \(\left(d\right)\) là \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right).\)
Ta có đường thẳng \(\left(d\right)\) nhận \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right)\) làm VTPT; đi qua điểm \(A\left(3;-1\right).\)
\(\Rightarrow\) Phương trình đường thẳng \(\left(d\right)\) là:
\(2\left(x-3\right)+3\left(y+1\right)=0.\\ \Leftrightarrow2x-6+3y+3=0.\\ \Leftrightarrow2x+3y-3=0.\)
Viết phương trình đường thẳng d song song với đường thẳng y = 3x + 2 đi qua (a 1;2) viết phương trình đường thẳng d có tung độ góc là 3 và đi qua a( -4;7) tính khoảng cách giữa hai điểm a1;4 và b(4;8) tính khoảng cách từ điểm a(-3;2 )đến đường thẳng y = 2x - 6
a: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d)//y=3x+2 nên \(\left\{{}\begin{matrix}a=3\\b\ne2\end{matrix}\right.\)
Vậy: (d): y=3x+b
Thay x=1 và y=2 vào (d), ta được:
\(b+3\cdot1=2\)
=>b+3=2
=>b=-1
vậy: (d): y=3x-1
b: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d) có tung độ gốc là 3 nên b=3
=>(d): y=ax+3
Thay x=-4 và y=7 vào (d), ta được:
\(-4a+3=7\)
=>-4a=4
=>a=-1
vậy: (d): y=-x+3
c: A(1;4); B(4;8)
=>\(AB=\sqrt{\left(4-1\right)^2+\left(8-4\right)^2}\)
=>\(AB=\sqrt{3^2+4^2}=\sqrt{25}=5\)
c: y=2x-6
=>2x-y-6=0
Khoảng cách từ A(-3;2) đến đường thẳng 2x-y-6=0 là;
\(d\left(A;2x-y-6=0\right)=\dfrac{\left|\left(-3\right)\cdot2+2\left(-1\right)-6\right|}{\sqrt{2^2+\left(-1\right)^2}}\)
\(=\dfrac{\left|-6-2-6\right|}{\sqrt{5}}=\dfrac{14}{\sqrt{5}}\)
Viết phương trình đường thẳng \(\left(d_1\right)\)đi qua 2 điểm A(-2,3) và B(1,-3)
mình mới học lớp 5 ah
hì hì là em mới đúng
Gọi phương trình đường thẳng \(\left(d_1\right)\)có dạng: \(y=ax+b\)
Vì A(-2;3) và B(1;-3) thuộc phương trình đường thẳng nên ta có hệ phương trình:
\(\hept{\begin{cases}3=-2a+b\\-3=a+b\end{cases}\Leftrightarrow}\hept{\begin{cases}-3a=6\\a+b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=-1\end{cases}}\)
Vậy phương trình đường thẳng đi qua 2 điểm A và B là : \(y=-2x-1\)
Viết phương trình tham số và phương trình tổng quát của đường thẳng \(\Delta \) trong các trường hợp sau:
a) Đường thẳng \(\Delta \) đi qua điểm \(A(1;1)\)và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;5} \right)\)
b) Đường thẳng \(\Delta \) đi qua gốc tọa độ \(O(0;0)\)và có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 7} \right)\)
c) Đường thẳng \(\Delta \) đi qua hai điểm \(M(4;0),N(0;3)\)
a) Đường thẳng \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;5} \right)\) nên có vectơ chỉ phương \(\overrightarrow u = \left( {5; - 3} \right)\), nên ta có phương trình tham số của \(\Delta \) là :
\(\left\{ \begin{array}{l}x = 1 + 5t\\y = 1 - 3t\end{array} \right.\)
Đường thẳng \(\Delta \) đi qua điểm \(A(1;1)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;5} \right)\)
Phương trình tổng quát của đường thẳng d là:
\(3(x - 1) + 5(y - 1) = 0 \Leftrightarrow 3x + 5y - 8 = 0\)
b) Đường thẳng \(\Delta \) đi qua gốc tọa độ \(O(0;0)\)và có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 7} \right)\), nên có phương trình tham số là:
\(\left\{ \begin{array}{l}x = 2t\\y = - 7t\end{array} \right.\)
Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 7} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n = \left( {7;2} \right)\) và đi qua \(O(0;0)\)
Ta có phương trình tổng quát là
\(7(x - 0) + 2(y - 0) = 0 \Leftrightarrow 7x + 2y = 0\)
c) Đường thẳng \(\Delta \) đi qua hai điểm \(M(4;0),N(0;3)\) nên có vectơ chỉ phương \(\overrightarrow u = \overrightarrow {MN} = ( - 4;3)\) và có vectơ pháp tuyến \(\overrightarrow n = (3;4)\)
Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 4 - 4t\\y = 3t\end{array} \right.\)
Phương trình tổng quát của \(\Delta \) là: \(3(x - 4) + 4(x - 0) = 0 \Leftrightarrow 3x + 4y - 12 = 0\)