Phương trình đường thẳng denta có dạng: \(y=k\left(x-1\right)-3=kx-k-3\)
Để denta cắt 2 trục Ox, Oy tạo thành tam giác \(\Rightarrow k\ne\left\{0;-3\right\}\)
Khi đó ta có: \(A\left(\dfrac{k+3}{k};0\right)\) \(\Rightarrow OA=\left|\dfrac{k+3}{k}\right|\)
\(B\left(0;-k-3\right)\Rightarrow OB=\left|k+3\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Leftrightarrow OA.OB=4\)
\(\Leftrightarrow\dfrac{\left(k+3\right)^2}{\left|k\right|}=4\Leftrightarrow\left(k+3\right)^2=4\left|k\right|\)
\(\Rightarrow\left[{}\begin{matrix}k^2+6k+9=4k\\k^2+6k+9=-4k\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}k^2+2k+9=0\left(vn\right)\\k^2+10k+9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=-1\\k=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-x-2\\y=-9x+6\end{matrix}\right.\)