Trong mp Oxy cho hai điểm A(-1;1) B(3;2). Tìm điểm M trên trục tung sao cho góc AMB=45°
Giải dùm mình với
Trong mp với hệ tọa đô Oxy cho hai điểm A(1;-2), B(-4;5). Tìm tọa độ điểm M trên trục Oy sao cho 3 điểm M,A,B thẳng hàng
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)
3 điểm M;A;B thẳng hàng khi:
\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)
\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)
trong mp Oxy, cho 2 điểm A(-1;1) và B(0;3)
tính giá trị m để điểm M(m+4; 2m+1) thẳng hàng với hai điểm A,B
\(\overrightarrow{AM}=\left(m+5;2m\right)\)
\(\overrightarrow{AB}=\left(1;2\right)\)
Để A,M,B thẳng hàng thì \(\dfrac{m+5}{1}=\dfrac{2m}{2}\)
=>m+5=m(loại)
Trong mp tọa độ Oxy, cho hai điểm A(1;4) B(-2;1). tìm tọa độ giao điểm C thuộc Ox, D thuộc Oy. sao cho A B C D thẳng hàng
Trong mp Oxy, cho hai điểm A(-2;1),B(2;3) và đường thẳngv:x-2y-1=0. Viết phương trình đường tròn có tâm I nằm trên đường thăng :x-2y-1=0, đi qua A, B
Lời giải:
Do $I\in (x-2y-1=0)$ nên gọi tọa độ của $I$ là $(2a+1,a)$
Đường tròn đi qua 2 điểm $A,B$ nên: $IA^2=IB^2=R^2$
$\Leftrightarrow (2a+1+2)^2+(a-1)^2=(2a+1-2)^2+(a-3)^2=R^2$
$\Rightarrow a=0$ và $R^2=10$
Vậy PTĐTr là: $(x-1)^2+y^2=10$
Giả sử \(I=\left(2m+1;m\right)\)
Ta có: \(IA=IB\)
\(\Leftrightarrow\sqrt{\left(-2-2m-1\right)^2+\left(1-m\right)^2}=\sqrt{\left(2-2m-1\right)^2+\left(3-m\right)^2}\)
\(\Leftrightarrow4m^2+9+12m+m^2-2m+1=4m^2-4m+1+m^2-6m+9\)
\(\Leftrightarrow5m^2+10m+10=5m^2-10m+10\)
\(\Leftrightarrow m=0\)
\(\Rightarrow I=\left(1;0\right)\)
Bán kính \(R=\sqrt{\left(2-1\right)^2+3^2}=\sqrt{10}\)
Phương trình đường tròn: \(\left(x-1\right)^2+y^2=10\)
Trong không gian Oxyz, cho hai điểm A - 2 ; 2 ; - 3 , B 4 ; 5 ; - 3 . M a , b , c là điểm trên mp (Oxy) sao cho M A 2 + 2 M B 2 đạt giá trị nhỏ nhất. Tính tổng a + b + c
A. 3
B. 6
C. 1
D. -1
Trong mp Oxy,cho 3 điểm A(3;-1),B(0;2),C(0;-4)
Dt ∆ABC bằng
Trong mp(Oxy) cho ( C): x +y2 – 2x +4y + 1 = 0. Đt (C) cắt trục tung tại A và B. Viết pt đtr (C) đi qua hai điểm A,B và ( C) cắt trục hoành tại M, N mà đoạn MN=6
(C) và (C') cùng đi qua AB nên tâm của (C') nằm trên trung trực AB
Tung độ A, B thỏa mãn:
\(y^2+4y+1=0\Rightarrow\dfrac{y_1+y_2}{2}=-2\)
\(\Rightarrow\) Tâm J của (C') có tọa độ dạng: \(\left(a;-2\right)\)
Gọi P là trung điểm MN \(\Rightarrow JP\perp MN\)
\(JP=\left|y_J\right|=2\Rightarrow R'=JM=\sqrt{MP^2+IP^2}=\sqrt{2^2+3^2}=\sqrt{13}\)
Phương trình (C') có dạng: \(\left(x-a\right)^2+\left(y+2\right)^2=13\)
Thay tọa độ \(A\left(0;-2+\sqrt{3}\right)\) vào ta được:
\(a^2+\left(-2+\sqrt{3}+2\right)^2=13\Leftrightarrow a=\pm\sqrt{10}\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+\sqrt{10}\right)^2+\left(y+2\right)^2=13\\\left(x-\sqrt{10}\right)^2+\left(y+2\right)^2=13\end{matrix}\right.\)
1) trong mp oxy. cho phép vị tự tâm i(2:3) tỉ số k=-2 biến điểm M (-7:2) thành M' có tọa độ là?
2) trong mp oxy . cho hai điểm M(4;6) và M'(-3:5) Phép vị tự tâm I tỉ số k =1/2 biến M thành M'. khi đó tọa độ I là ?
3) trong mp oxy cho ba điểm I(-2;-1),M(1;5) và M' (-1:1) giả sử v phép vị tự tâm I tỉ số k biến M thành M'.Khi đó giá trị của K là?
Câu 1:
Theo đề, ta có: \(\overrightarrow{IM'}=-2\cdot\overrightarrow{IM}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=-2\cdot\left(-7-2\right)=18\\y-3=-2\cdot\left(2-3\right)=2\end{matrix}\right.\Leftrightarrow M'\left(20;5\right)\)
Giúp mình giải Trong mp tọa độ Oxy cho điểm A(0;3) tìm B=Q(0 -45°)