Giao điểm của parabol (P): y= 2x2 với đường thẳng y=8 là A(x1 ; y1) và B(x2 ; y2). Khi đó x1.y1 + x2.y2 = ...
Cho parabol (P): y = 2 x 2 và đường thẳng (d): y = x + 1. Số giao điểm của đường thẳng d và parabol (P) là
A. 1
B. 0
C. 3
D. 2
Xét phương trình hoành độ giao điểm của parabol (P) và đường thẳng d
2x2 = x + 1 ⇔ 2x2 – x – 1 = 0 ⇔ 2x2 – 2x + x – 1 = 0
⇔ 2x(x – 1) + (x− 1) = 0
⇔ (2x + 1) (x – 1) = 0
⇔ x = − 1 2 x = 1
Vậy có hai giao điểm của đường thẳng d và parabol (P)
Đáp án cần chọn là: D
Cho parabol (P): y=2x2 và đường thẳng (d): y=4x-m
a) Tìm tọa độ giao điểm của đường thẳng (d) và (P) khi tham số m=6
b) Tìm tham số m để (d) cắt (P) tại hai điểm phân biệt A,B có hoành độ lần lượt là x1;x2 sao cho 2x1+x2= -5
b. Phương trình hoành độ giao điểm:
\(x^2=4x-m\Leftrightarrow x^2-4x+m=0\) (1)
d cắt (P) tại 2 điểm phân biệt khi và chỉ khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)
Khi đó kết hợp hệ thức Viet và điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=4\\2x_1+x_2=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-9\\x_2=13\end{matrix}\right.\)
Mà \(x_1x_2=m\)
\(\Rightarrow m=-9.13=-117\)
a) Thay m=6 vào (d), ta được: y=4x-6
Phương trình hoành độ giao điểm của (P) và (d) là:
\(2x^2=4x-6\)
\(\Leftrightarrow2x^2-4x+6=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot6=16-48=-32\)(loại)
Vì Δ<0 nên phương trình vô nghiệm
Vậy: Khi m=6 thì (P) và (d) không có điểm chung
CHO PARABOL(P):y=x^2 và đường thẳng d: 2mx-m^2+1
a) xác định tọa độ giao điểm của đường thẳng d vs parabol khi m=1
b) tìm m sao cho đường thẳng d cắt parabol(P)tại 2 điểm phân biệt có hoành đọ x1,x2 mà x1+2x2=7
giúp tôi vssss
trong mặt phẳng tọa độ Oxy cho parabol (P):y=-1/2x2và đường thẳng (d) y=mx+m-3(với m là tham số)
a, khi m=-1, tìm tọa độ giao điểm của đường thẳng (d)và parabol(P)
b, tìm m để đường thẳng (d)và parabol(P)cắt nhau tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn hệ thức x12+x22=14
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
Cho hàm số y= 2x^2 có đồ thị là parabol (P)
1. Tìm tọa độ giao điểm của parabol (P) với đường thẳng y= 3x-1
2. Đường thẳng y= 6x-4 cắt parabol (P) tại A và B. Tính SAOB
3. Trên parabol lấy 2 điểm A và B có hoành độ là -1 và 2. Viết PT đường thẳng AB
4. Tìm m để đường thẳng y= x+m tiếp xúc với parabol
5. Chứng minh đường thẳng y= mx-2m-5 cắt parabol tại 2 điểm phân biệt với mọi m
6. Tìm m để đường thẳng mx-2m+5 cắt parabol tại 2 điểm có hoành độ x1, x2 thỏa mãn x1^2 + x2^2 = 4
Trong mặt phẳng tọa độ oxy, đường thẳng (d) y=2x-m+3 và Parabol (P) y=x2.
a) Tìm m để đường thẳng (d) đi qua A(1;0)
b) Tìm m để dường thẳng (d) và Parabol (P) cắt nhau tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 thỏa mãn x12 -2x2 +x1.x2 = -12
Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$
$\Leftrightarrow 0=2.1-m+3=5-m$
$\Leftrightarrow m=5$
b.
PT hoành độ giao điểm:
$x^2-(2x-m+3)=0$
$\Leftrightarrow x^2-2x+m-3=0(*)$
Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$
Điều này xảy ra khi:
$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$
Khi đó:
$x_1^2-2x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-x_2^2=-12$
$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$
$\Rightarrow x_1=-2; x_2=4$
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
Bài 1: Cho parabol (P): y = 2x2.
1. Tìm giá trị của a,b sao cho đường thẳng y = ax+b tiếp xúc với (P) và đi qua A(0;-2).
2. Tìm phương trình đường thẳng tiếp xúc với (P) tại B(1;2).
3. Tìm giao điểm của (P) với đường thẳng y = 2m +1.
1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)
\(\Rightarrow2x^2-ax-b=0\left(I\right)\)
Mà (P) tiếp xúc với d .
Nên PT ( I ) có duy nhất một nghiệm .
\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)
Lại có : d đi qua A .
\(\Rightarrow b+0a=-2=b\)
\(\Rightarrow a=4\)
2. Tương tự a
3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)
\(\Rightarrow2x^2-2m-1=0\)
Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)
=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)
Tính độ dài quãng đường từ nhà bạn Hoà Hậu đến nhà bà nội và thời điể xuất phát của ô tô. Câu 8: Cho hàm số y = 2x2 (P) và hàm số y = -4x - 2 (d) a) Vẽ đồ thị hàm số y = 2x2 b) Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d).
8:
a:
b: PTHĐGĐ là:
2x^2+4x+2=0
=>x=-1
=>y=2
Câu 7: (1,0 điểm) Cho hàm số y = 2x2 (P) và hàm số y = -4x - 2 (d) a) Vẽ đồ thị hàm số y = 2x2 b) Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d) bằng phương pháp đại số.
làm bài này đâu nhất thiết phải dùng cách nào đâu bạn, vận dụng cách khoa học nhất là đc rồi nhé
a, bạn tự vẽ
b, Theo bài ra ta có hệ
\(\left\{{}\begin{matrix}2x^2+4x+2=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x^2+4x+2=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy (P) cắt (d) tại A(-1;2)
Cho parabol (P): y= -x2 và đường thẳng (d): y = mx -1
a) Chứng minh rằng với mọi m thì (d) luôn cắt (P) tại 2 điểm phân biệt.
b) Gọi x1; x2 lần lượt là hoành độ các giao điểm của đường thẳng (d) và parabol (P). Tìm giá trị của m để \(x_1^2x_2+x_2^2x_1-x_1x_2=3\)
a: Phương trình hoành độ giao điểm là:
\(x^2-mx+1=0\)
\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)
Để (P) và (d) cắt nhau tại 2 điểm phân biệt thi Δ>0
=>(m-2)(m+2)>0
hay \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
b: Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)
Theo đề, ta có:
\(x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)
\(\Leftrightarrow m-1=3\)
hay m=4