1.Cho biểu thức A=(\(\dfrac{x+2}{2x-4}\) - \(\dfrac{x-2}{2x+4}\)):\(\dfrac{2x}{x^{ }2+2x}\)(ĐKXĐ: x≠-2; x≠2; x≠0)
a)Rút gọn biểu thức A.
b)Tính giá trị của biểu thức A tại x= -4.
Câu 1. Cho hai biểu thức A =\(\dfrac{x+x^2}{2-x}\)và B = \(\dfrac{2x}{x+1}\)+\(\dfrac{3}{x-2}\)- \(\dfrac{2x^2+1}{x^2-x-2}\) a) Tính gía trị biểu thức A khi |2x-3|= 1
b) Tìm ĐKXĐ và tính giá trị biểu thức B
c) Tìm số nguyên x lớn nhất để P = A.B đạt giá trị lớn nhất
a: |2x-3|=1
=>2x-3=1 hoặc 2x-3=-1
=>x=1(nhận) hoặc x=2(loại)
KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)
b: ĐKXĐ: x<>-1; x<>2
\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)
A=\(\left(\dfrac{x}{x+2}+\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{4-x^2}\right):\dfrac{4}{x+2}\)
a) tìm đkxđ và rút gọn biểu thức A
b) tìm x để A=3
c) tìm x để a<1
d) tính giá trị của A khi |x| =\(\dfrac{1}{2}\)
Tìm ĐKXĐ của các biểu thức :
a) A = \(\dfrac{1}{\sqrt{x^2-2x-1}}\)
b) B = \(\dfrac{1}{\sqrt{x-\sqrt{2x+1}}}\)
a) Biểu thức xác định `<=> x^2-2x-1>0`
`<=>(x^2-2x+1)-2>0`
`<=>(x-1)^2-(\sqrt2)^2>0`
`<=>(x-1+\sqrt2)(x-1-\sqrt2)>0`
`<=>` \(\left[{}\begin{matrix}x< 1-\sqrt{2}\\x>1+\sqrt{2}\end{matrix}\right.\)
`D=(-∞; 1-\sqrt2) \cup (1+\sqrt2 ; +∞)`
b) Biểu thức xác định `<=> x-\sqrt(2x+1)>0`
`<=> x>\sqrt(2x+1)`
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2x+1\ge0\\x^2>2x+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-\dfrac{1}{2}\\\left[{}\begin{matrix}x< 1-\sqrt{2}\\x>1+\sqrt{2}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow x>1+\sqrt{2}\)
`D=(1+\sqrt2 ; +∞)`
Câu 1 : Cho biểu thức \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm số nguyên x để A nhận giá trị là một số nguyên
a: \(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\left(\dfrac{x\left(x^2-4x+4\right)+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3-4x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)
b: Để A là số nguyên thì x+1 chia hết cho 2x
=>2x+2 chia hết cho 2x
=>2 chia hết cho 2x
=>2x=2
=>x=1(nhận)
cho P=\(\left(\dfrac{x+2}{2x-4}+\dfrac{x-2}{2x+4}+\dfrac{-8}{x^2-4}\right):\dfrac{4}{x-2}\)
A) Tìm điều kiện của x để P xác định
B) Rút gọn biểu thức P
C) tính giá trị của biểu thức P khi x=\(-1\dfrac{1}{3}\)
Cho biểu thức \(A=\dfrac{x^2-x}{x^2-4x+4}:\left(\dfrac{x}{x-1}+\dfrac{1}{x-2}-\dfrac{x^2-2x-1}{x^2-3x+2}\right)\)
a, Tìm ĐKXĐ và rút gọn A
b,Tìm GTNN của biểu thức A khi x>1
Cho biểu thức B=\(\left(\dfrac{x+1}{2x-1}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)
a. ĐKXĐ
b, CMR : khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x ?
a, ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b,Ta có: \(B=\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)
\(=\left[\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\dfrac{6}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right].\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+1+6-\left(x^2+2x-3\right)}{2\left(x-1\right)\left(x+1\right)}.\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{2.10}{5}=4\)
Vậy giá trị của B ko phụ thuộc vào giá trị của biến x
\(\sqrt{2x+11}+\sqrt{x-1}\) ; \(\dfrac{\sqrt{-5x}}{x}\) ; \(\dfrac{\sqrt{7x^2+1}}{5}\); \(\sqrt{x^2-14x+33}\); \(\dfrac{\sqrt{-x^2+6x+16}}{-2}+\dfrac{x^2-2x}{3x^2}\)
Tìm ĐKXĐ của x để các biểu thức trên có nghĩa
a: ĐKXĐ: \(x\ge1\)
b: ĐKXĐ: \(x< 0\)
c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)
3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)
4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
5) ĐKXĐ:
+) \(-x^2+6x+16\ge0\)
\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)
\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)
\(\Leftrightarrow-2\le x\le8\)
+) \(3x^2\ne0\Leftrightarrow x\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)
Cho biểu thức : A= \(\dfrac{1}{x-2}+\dfrac{x^2-2x}{x^2-4}+\dfrac{1}{2+x}\)
a.Tính giá trị của biểu thức A tại x thoả mãn: 2x² + x = 0
b.Tìm x để A= \(\dfrac{-1}{3}\)
c. Tìm x nguyên để A nhận giá trị nguyên