Cho ba số dương x , y , z thỏa mãn điều kiện 1/x + 1/y - 2/z=0
Tìm giá trị nhỏ nhất của bt; T = x+z/2x-z + z+y/2y-z
Bài 1. Cho ba số dương thỏa mãn điều kiện x + y + z = 4. Tìm giá trị nhỏ nhất của biểu thức A = 4/x+1 + 9/y+2 +25/z+3
Ta có
\(A=\dfrac{4}{x+1}+\dfrac{9}{y+2}+\dfrac{25}{z+3}\)
\(A=\dfrac{2^2}{x+1}+\dfrac{3^2}{y+2}+\dfrac{5^2}{z+3}\)
\(A\ge\dfrac{\left(2+3+5\right)^2}{x+1+y+2+z+3}\) (BĐT Schwarz)
\(A\ge\dfrac{10^2}{10}=10\) (vì \(x+y+z=4\))
ĐTXR \(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{3}{y+2}=\dfrac{5}{z+3}\)
\(\Rightarrow\dfrac{2}{x+1}=\dfrac{3}{y+2}=\dfrac{5}{z+3}=\dfrac{2+3+5}{z+1+y+2+z+3}=1\). Dẫn đến \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\). Vậy, GTNN của A là 10 khi \(\left(x,y,z\right)=\left(1,1,2\right)\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
Lời giải:
Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:
$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$
$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)
$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)
Vậy $P_{\min}=2022$
Cho ba số thực dương x,y,z thỏa mãn điều kiện x + y +z = xyz .Tìm giá trị nhỏ nhất của biểu thức Q = \(\dfrac{y+2}{x^2}+\dfrac{z+2}{y^2}+\dfrac{x+2}{z^2}\)
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=2. tìm giá trị nhỏ nhất của P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Ờ thì AM-GM (là Cô si ko âm đây)
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}\cdot\frac{y+z}{4}}=2\cdot\frac{x}{2}=x\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
Cộng theo vế 3 BĐT trên ta có:
\(P+\frac{2\left(x+y+z\right)}{4}\ge x+y+z\Leftrightarrow P\ge1\)
ĐẲng thức xảy ra khi \(x=y=z=\frac{2}{3}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{2}{3}\)
Vậy \(P_{min}=1\) tại \(x=y=z=\frac{2}{3}\)
Đinh Đức Hùng ơi, cái cauchy-schwars dưới dạng engel mình chưa học, mới học cái bđt cauchy a+b >= căn ab với a,b ko âm thoy à
cho x y z là ba số thực thay đổi thỏa mãn điều kiện x+y+z=3
tìm giá trị nhỏ nhất của biểu thức P= 1/căn x+ 1/căn y+ 1/căn z
Áp dụng BĐT Cô-si, ta có :
\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge3\sqrt[3]{\frac{1}{\sqrt{xyz}}}\)
Mặt khác, ta có : \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=1\)
\(\Rightarrow P\ge3\)
Vậy GTNN của P là 3 khi x = y = z = 1
Cách đơn giản hơn cách của anh Tùng:) sửa nốt là thực dương :V
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{\left(1+1+1\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Xét bđt phụ \(x+y+z\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)với x,y,z > 0 ( cấy ni thì dễ rồi nhân 2 vào cả 2 vế chuyển vế là xong )
\(\Rightarrow P\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)
Dấu "=" xảy ra <=> x=y=z=1
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel kết hợp bất đẳng thức phụ \(x+y+z\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)ta có :
\(P\ge\frac{\left(1+1+1\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)
Dấu "=" xảy ra <=> x=y=z=1
X,y,z là số dương thỏa mãn đk x+y+z=a Tìm giá trị nhỏ nhất của bt Q=(1+a/x)(1+a/y)(1+a/z) helppppppp
Đề là: \(Q=\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\) đúng không em nhỉ?
Ta có:
\(Q=\left(1+\dfrac{x+y+z}{x}\right)\left(1+\dfrac{x+y+z}{y}\right)\left(1+\dfrac{x+y+z}{z}\right)\)
\(=\dfrac{\left(x+x+y+z\right)\left(x+y+y+z\right)\left(x+y+z+z\right)}{xyz}\)
\(Q\ge\dfrac{4\sqrt[4]{x^2yz}.4\sqrt[4]{xy^2z}.4\sqrt[4]{xyz^2}}{xyz}=\dfrac{64xyz}{xyz}=64\)
\(Q_{min}=64\) khi \(x=y=z=\dfrac{a}{3}\)
Cho ba số dương x,y,z thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức P= (x/x+1) +(y/y+1)+(z/z+1)
x/x+1 = 1- 1/x+1
y/y+1 = 1- 1/y+1
z/z+1=1- 1/z+1
==) P = 3 - ( 1/x+1 + 1/y+1 + 1/x+1 )
Áp dụng Bất đẳng thức 1/a + 1/b + 1/c >= 9/a+b+c
==) P>=3 - 9/4 = 3/4
Dấu "=" xảy ra khi x,y,z \(\in\)R
x=y=z \(\)
x+y+z=1
==) x=y=z =1/3
Vậy MinP = 3/4 khi x=y=z=1/3
a, Cho x3+y3+3(x2+y2)+4(x+y)+4=0 và x.y>0
Tìm giá trị lớn nhất biểu thức: M = \(\frac{1}{x}+\frac{1}{y}\)
b, Cho các số x, y, z thỏa mãn điều kiện: y2 + z2 + yz = 1 - \(\frac{3}{2}x^2\)
Tìm giá trị lớn nhất và nhỏ nhất của P = x + y + z
c, Cho ba số dương x, y, z thoả mãn điều kiện: \(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức: P = 2x + 3y – 4z.
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)