Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Anh
Xem chi tiết
๖Fly༉Donutღღ
18 tháng 5 2018 lúc 12:44

AB = ?????? bao nhiêu hã bạn

illumina
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Kaito Kid
31 tháng 3 2022 lúc 17:37

a)Theo định lý Pytago ta có

HC2=BC2-BH2

HC2=152-122

HC2=81

HC=9 (cm)

b)DC=DH+HC=16+9=25

Áp dụng định lý Pytago đảo ta có

DC2=BD2+BC2

252=202+152

625=625

=>Tam giác BCD vuông tại D

=>BD vuông góc BC

Trịnh Minh Tuấn
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2021 lúc 19:54

Kẻ đường cao BE \(\Rightarrow BE=12\)

Pitago tam giác vuông BDE:

\(DE=\sqrt{BD^2-BE^2}=9\left(cm\right)\)

Qua B kẻ đường thẳng song song AC cắt CD kéo dài tại P

Do \(AC\perp BD\Rightarrow BP\perp BD\) hay tam giác BPD vuông tại B

Mặt khác \(\left\{{}\begin{matrix}AB||CD\\AC||BP\end{matrix}\right.\) \(\Rightarrow ABPC\) là hbh

\(\Rightarrow AB=CP\Rightarrow AB+CD=CP+CD=DP\)

Hệ thức lượng tam giác vuông BPD:

\(BD^2=DE.DP\Rightarrow DP=\dfrac{BD^2}{DE}=25\left(cm\right)\)

\(S_{ABCD}=\dfrac{1}{2}BE.\left(AB+CD\right)=\dfrac{1}{2}BE.DP=\dfrac{1}{2}.9.25=112,5\left(cm^2\right)\)

Nguyễn Việt Lâm
5 tháng 7 2021 lúc 19:55

undefined

nguyễn tố ninh
Xem chi tiết
Ngọc Quách
Xem chi tiết
Thu Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 13:54

a: Xét ΔDAB vuông tại A có 

\(DB^2=AB^2+AD^2\)

hay DB=25(cm)

Xét ΔDAB vuông tại A có AO là đường cao ứng với cạnh huyền DB

nên \(\left\{{}\begin{matrix}AD^2=DO\cdot DB\\AB^2=BO\cdot BD\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DO=16\left(cm\right)\\OB=9\left(cm\right)\end{matrix}\right.\)

Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 13:59

\(a,BD=\sqrt{AB^2+AD^2}=25\left(cm\right)\left(pytago\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AD^2=OD\cdot BD\\AB^2=OB\cdot BD\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}OD=\dfrac{AD^2}{BD}=16\left(cm\right)\\OB=\dfrac{AB^2}{BD}=9\left(cm\right)\end{matrix}\right.\)

\(b,\) Áp dụng HTL:

\(\left\{{}\begin{matrix}AO^2=DO\cdot OB=144\\AD^2=AO\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AO=12\left(cm\right)\\AC=\dfrac{AD^2}{AO}=\dfrac{100}{3}\left(cm\right)\end{matrix}\right.\)

\(c,DC=\sqrt{AD^2+AC^2}=\dfrac{20\sqrt{34}}{3}\left(cm\right)\\ S_{ABCD}=\dfrac{1}{2}AD\left(AB+CD\right)=10\left(\dfrac{20\sqrt{34}}{3}+15\right)=\dfrac{450+200\sqrt{34}}{3}\left(cm^2\right)\)

Ha Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 22:48

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

góc C chung

=>ΔBDC đồng dạng vói ΔHBC

b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)

HC=15^2/25=9cm

HD=25-9=16cm

Nguyễn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 0:27

a:Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

góc C chung

=>ΔBDC đồng dạng với ΔHBC

b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)

HC=15^2/25=9cm

HD=25-9=16cm