Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Bảo Vy
1 tháng 3 2023 lúc 16:33

Theo đề bài ra, ta có :

`A=1+32+34+36+....+32008`

\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`

`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`

\(\Rightarrow\) `8A=(-1)+32010`

\(\Rightarrow\) `8A-32010=(-1)`

@Nae

Nguyễn Bảo Vy
1 tháng 3 2023 lúc 16:34

Theo đề bài ra, ta có :

A=1+3^2+3^4+3^6+....+3^2008

 9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010

9A - A= (3^2+3^4+3^6+3^8+....+ 3^2010)- (1+3^2+3^4+3^6+....+ 3^2008)

8A = -1+3^2010

 8A - 3^2010 = (-1)

@Nae

Lương Huyền Ngọc
Xem chi tiết
Hà Hà
28 tháng 3 2016 lúc 22:02

a) A  = 1+32+34+36+...+32006​.

2A= (32+32006)+(34+32004)+.....15988 cặp số..+2

= 32038.15988 + 2

= 512223546
Vậy tổng của A = 512223546
Số dư của A chia cho 113= 512223546 - 113.4532951=83 (Đây là cách tính số dư: Số chia - số bị chia x phần nguyên)

Tạ Thị Bích Huệ
Xem chi tiết
TRẦN BÌNH KHÔI
Xem chi tiết
Dang Tung
24 tháng 10 2023 lúc 16:51

A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020

= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020

= 10.(1+3^4+...+3^2016) + 3^2020

Mà : 3^n có tận cùng là : 1,3,9,7

Do đó 3 ^2020 không chia hết cho 10

Lại có 10.(1+3^4+...+3^2016) chia hết cho 10

=> A không chia hết cho 10

Viên Tiến Duy
24 tháng 10 2023 lúc 16:58

A=(1+32)+(34+36)+ ... + (32018+32020)

  =(1+32)+ 34(1+32)+....+32018(1+32)

  =(1+32) (1+34+....+32018)

  =10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)

Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)

 

Toru
24 tháng 10 2023 lúc 17:07

\(A=1+3^2+3^4+3^6+...+3^{2020}\\=(1+3^2)+(3^4+3^6)+(3^8+3^{10})+...+(3^{2018}+3^{2020})\\=10+3^4\cdot(1+3^2)+3^8\cdot(1+3^2)+...+3^{2018}\cdot(1+3^2)\\=10+3^4\cdot10+3^8\cdot10+..+3^{2018}\cdot10\\=10\cdot(1+3^4+3^8+...+3^{2018})\)

Vì \(10\cdot(1+3^4+3^8+...+3^{2018})\vdots10\)

nên \(A\vdots10\)

Tran Le Hoang Vu
Xem chi tiết
Nguyễn Ngọc Anh Minh
23 tháng 12 2023 lúc 8:26

\(9A=3^2-3^4+3^6-3^8+...+3^{78}-3^{80}\)

\(10A=9A+A=1-3^{80}\)

\(\Rightarrow1-10A=3^{80}=\left(3^{40}\right)^2\) là số chính phương

ọ e en
24 tháng 12 2023 lúc 20:00

làm đề cầu giấy à

 

Phạm thùy dương
Xem chi tiết
Dương Lam Hàng
24 tháng 7 2018 lúc 8:19

Số số của dãy trên là:

 (32009 - 30):1+1 =31980 (số)

Số cặp số của dãy là:

   31980 : 2 = 15990 (cặp)

\(30+31+32+....+32008+32009\)

\(=\left(30+32009\right)+\left(31+32008\right)+...\)

\(=32039\times15990=512303610\)

Vậy \(512303610\div8=64037951\left(dư2\right)\)

Phan Lâm Thanh Trúc
Xem chi tiết
Võ Ngọc Phương
7 tháng 10 2023 lúc 16:18

Ta có:

\(A=3+3^2+3^3+3^4+3^5+3^6\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)\)

\(A=39+3^3.\left(3+3^2+3^3\right)\)

\(A=39+3^3.39\)

\(A=39.\left(1+3^3\right)\)

Vì \(39⋮13\) nên \(39.\left(1+3^3\right)⋮13\)

Vậy \(A⋮13\)

\(#WendyDang\)

Akai Haruma
7 tháng 10 2023 lúc 16:18

Lời giải:
$A=(3+3^2+3^3)+(3^4+3^5+3^6)$

$=3(1+3+3^2)+3^4(1+3+3^2)=(1+3+3^2)(3+3^4)=13(3+3^4)\vdots 13$ 

Ta có đpcm.

Nguyễn Việt Hà
Xem chi tiết
Ng Ngọc
14 tháng 8 2023 lúc 22:20

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 22:09

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

secret1234567
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 22:46

\(A=3^2+3^4+3^6+...+3^{20}-200n\)

\(=3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{18}\left(1+3^2\right)-200n\)

\(=10\left(3^2+3^6+...+3^{18}-20n\right)⋮10\)

Mai Minh Châu
Xem chi tiết

A = 32 + 34 + 36 +........+ 32024

A = 32.( 1 + 32 + 34 +......+ 32022)

=> A ⋮ 1; 3; 9; A

Vậy A là hợp số