Cho (un) là cấp số cộng \({u_1}\; = {\rm{ }}-{\rm{ }}7,{\rm{ }}{u_2}\; = {\rm{ }}-{\rm{ }}2.\) Viết năm số hạng đầu của cấp số cộng đó.
Cho cấp số cộng \(u_1,u_2,u_3,...,u_n,...\) có công sai bằng 3. Biết dãy \(u_1,u_3,u_5,...,u_{2n+1}\) là cấp số cộng. Tính công sai của cấp số cộng đó?
Công sai của cấp số cộng đó là:
\(u_3-u_1=u_1+2d-u_1=2d=2\cdot3=6\)
1) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2\) và \(u_7=-10\) công sai của cấp số cộng là
2) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=1\) và d = 2 tổng \(S_{10}=u_1+u_2+u_3...+u_{10}\) bằng
3) cho cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=3\) và d = 2. Tổng của 2019 số hạng đầu bằng
4) cho cấp số cộng 2;5;8;11;14... công sai của cấp số cộng đã cho bằng
5) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2\) và d = 9 khi đó số 2018 là số hạng thứ mấy trong dãy
6) cho cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=3\) và d = 2
\(Bài.1:\\ u_7=u_1+6d\\ \Leftrightarrow-10=2+6d\\ \Rightarrow6d=-10-2=-12\\ Vậy:d=\dfrac{-12}{6}=-2\\ Bài.2:S_{10}=10.u_1+\dfrac{10.\left(10-1\right)}{2}.d=10.1+\dfrac{10.9}{2}.2=100\\ Bài.3:S_{2019}=2019.u_1+\dfrac{2019.\left(2019-1\right)}{2}.d\\ =2019.3+\dfrac{2019.2018}{2}.2=2019.2021=4080399\)
Bài 4:
\(d=u_2=u_1=5-2=3\)
Bài 5:
\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow2018=2+\left(n-1\right).9\\ \Leftrightarrow2+9n-9=2018\\ \Leftrightarrow9n=2018-2+9\\ \Leftrightarrow9n=2025\\ \Leftrightarrow n=\dfrac{2025}{9}=225\)
Vậy: 2018 là số hạng thứ 225 của dãy
Bài 6:
Đề chưa có yêu cầu
4: d=u2-u1=3
5: Đặt 2018=2+(n-1)*9
=>9(n-1)=2016
=>n-1=224
=>n=225
=>2018 là số thứ 225
3:
\(S_{2019}=2019\left(\dfrac{2\cdot3+2018\cdot2}{2}\right)=4080399\)
2:
\(S_{10}=\dfrac{10\cdot\left(2\cdot1+9\cdot2\right)}{2}=10\left(1+9\right)=100\)
Cho cấp số cộng \(u_1,u_2,u_3,...,u_n\) có công sai d, các số hạng của cấp số cộng đã cho đều khác 0. Với giá trị nào của d thì dãy số \(\dfrac{1}{u_1};\dfrac{1}{u_2};\dfrac{1}{u_3};...;\dfrac{1}{u_n}\) là một cấp số cộng?
1) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=-1\) và d =2. Tính \(u_6;u_{15};u_{80}\)
2) cho cấp số cộng \(\left(u_n\right)\) biết \(u_1=1\) và d = 4. Số 201 là số hạng thứ mấy
Xem lại đề câu 1
2,
\(u_{201}=u_1+\left(201-1\right).d=1+200.4=801\)
1) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=6\) và d = -2. Tính \(S_{99}=u_1+u_2+u_3...+u_{99}\)
2) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=-2\) và d = 4. Tính \(S_{100}=u_1+u_2+u_3...+u_{99}+u_{100}\)
1: \(S_{99}=\dfrac{99\cdot\left[2\cdot6+98\cdot\left(-2\right)\right]}{2}=99\cdot\left(6-98\right)\)
=-9108
2: \(S_{100}=\dfrac{100\cdot\left(2\cdot\left(-2\right)+99\cdot4\right)}{2}=50\left(-4+99\cdot4\right)\)
=50*392
=19600
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\), công sai d
a) Viết năm số hạng đầu của cấp số cộng theo \({u_1}\) và \(d\)
b) Dự đoán công thức tính \({u_n}\) theo \({u_1}\) và \(d\)
\(a,u_1;u_2=u_1+d;u_3=u_1+2d;u_4=u_1+3d;u_5=u_1+4d\\ b,u_n=u_1+\left(n-1\right)d\)
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = \frac{1}{3}\,\,v\`a \,\,{u_1} + {u_2} + {u_3} = - 1\)
a) Tìm công sai d và viết công thức của số hạng tổng quát \({u_n}\)
b) Số \( - 67\) là số hạng thứ mấy của cấp số cộng trên?
c) Số 7 có phải là một số hạng của cấp số cộng trên không?
a) Ta có:
\(\begin{array}{l}{u_1} + {u_2} + {u_3} = - 1 \Leftrightarrow {u_1} + {u_1} + d + {u_1} + 2d = - 1\\ \Leftrightarrow 3{u_1} + 3d = - 1\\ \Leftrightarrow 3.\left( {\frac{1}{3}} \right) + 3d = - 1\\ \Leftrightarrow 3d = - 2\\ \Leftrightarrow d = - \frac{2}{3}\end{array}\)
Công thức tổng quát của số hạng \({u_n}\): \({u_n} = \frac{1}{3} + \left( {n - 1} \right)\left( { - \frac{2}{3}} \right)\)
b) Ta có:
\(\begin{array}{l} - 67 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = 101\\ \Leftrightarrow n = 102\end{array}\)
- 67 là số hạng thứ 102 của cấp số cộng
c) Ta có:
\(\begin{array}{l}7 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = - 10\\ \Leftrightarrow n = - 9\end{array}\)
7 không là số hạng của cấp số cộng
Cho cấp số cộng ( u n ) có số hạng tổng quát là u n = 3 n - 2 . Tìm công sai d của cấp số cộng
A. d = 3
B. d = 2
C. d = - 2
D. d = - 3
Chọn đáp án A.
Ta có u n + 1 - u n = 3 ( n + 1 ) - 2 - 3 n + 2 = 3
Suy ra d = 3 là công sai của cấp số cộng
Cho cấp số cộng u n có số hạng tổng quát là u n = 3 n - 2 . Tìm công sai d của cấp số cộng.
A. d = 3
B. d = 2
C. d = - 2
D. d = - 3