a) Ta có:
\(\begin{array}{l}{u_1} + {u_2} + {u_3} = - 1 \Leftrightarrow {u_1} + {u_1} + d + {u_1} + 2d = - 1\\ \Leftrightarrow 3{u_1} + 3d = - 1\\ \Leftrightarrow 3.\left( {\frac{1}{3}} \right) + 3d = - 1\\ \Leftrightarrow 3d = - 2\\ \Leftrightarrow d = - \frac{2}{3}\end{array}\)
Công thức tổng quát của số hạng \({u_n}\): \({u_n} = \frac{1}{3} + \left( {n - 1} \right)\left( { - \frac{2}{3}} \right)\)
b) Ta có:
\(\begin{array}{l} - 67 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = 101\\ \Leftrightarrow n = 102\end{array}\)
- 67 là số hạng thứ 102 của cấp số cộng
c) Ta có:
\(\begin{array}{l}7 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = - 10\\ \Leftrightarrow n = - 9\end{array}\)
7 không là số hạng của cấp số cộng