Ta có: \(u_n+1= - 5(n +1)+ 7=-5n+2\)
Do đó, \(u_n+1 - u_n = -5n+2-( - 5n + 7)=-5=d\)
=> \(({u_n})\) là cấp số cộng
Ta có: \(u_n+1= - 5(n +1)+ 7=-5n+2\)
Do đó, \(u_n+1 - u_n = -5n+2-( - 5n + 7)=-5=d\)
=> \(({u_n})\) là cấp số cộng
Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số cộng? Nếu là cấp số cộng, hãy tìm số hạng đầu \({u_1}\) và công sai d.
a) \({u_n} = 3 - 2n\)
b) \({u_n} = \frac{{3n + 7}}{5}\)
c) \({u_n} = {3^n}\)
Tính tổng 100 số hạng đầu của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 0,3n + 5\) với mọi \(n \ge 1\)
Trong các dãy số \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = - 3\), công sai d = 5
a) Viết công thức của số hạng tổng quát \({u_n}\)
b) Số 492 là số hạng thứ mấy của cấp số cộng trên?
c) Số 300 có là số hạng nào của cấp số cộng trên không?
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = \frac{1}{3}\,\,v\`a \,\,{u_1} + {u_2} + {u_3} = - 1\)
a) Tìm công sai d và viết công thức của số hạng tổng quát \({u_n}\)
b) Số \( - 67\) là số hạng thứ mấy của cấp số cộng trên?
c) Số 7 có phải là một số hạng của cấp số cộng trên không?
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\), công sai d
a) So sánh các tổng sau: \({u_1} + {u_n};\,{u_2} + {u_{n - 1}};...;{u_n} + {u_1}\)
b) Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n}\). So sánh \(n\left( {{u_1} + {u_n}} \right)\) với \(2{S_n}\)
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\), công sai d
a) Viết năm số hạng đầu của cấp số cộng theo \({u_1}\) và \(d\)
b) Dự đoán công thức tính \({u_n}\) theo \({u_1}\) và \(d\)
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 4;{u_2} = 1\). Tính \({u_{10}}\)
Trong các dãy số sau, dãy số nào là cấp số cộng? Vì sao?
a) \(10; - 2; - 14; - 26; - 38\)
b) \(\frac{1}{2};\frac{5}{4};2;\frac{{11}}{4};\frac{7}{2}\)
c) \(\sqrt 1 ;\sqrt 2 ;\sqrt 3 ;\sqrt 4 ;\sqrt 5 \)
d) 1; 4; 7; 10; 13
Cho (un) là cấp số cộng \({u_1}\; = {\rm{ }}-{\rm{ }}7,{\rm{ }}{u_2}\; = {\rm{ }}-{\rm{ }}2.\) Viết năm số hạng đầu của cấp số cộng đó.