Ta có: \({u_2} - {u_1} = d \Rightarrow d = - 3\)
\({u_{10}} = 4 + 9.\left( { - 3} \right) = - 23\)
Ta có: \({u_2} - {u_1} = d \Rightarrow d = - 3\)
\({u_{10}} = 4 + 9.\left( { - 3} \right) = - 23\)
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\), công sai d
a) So sánh các tổng sau: \({u_1} + {u_n};\,{u_2} + {u_{n - 1}};...;{u_n} + {u_1}\)
b) Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n}\). So sánh \(n\left( {{u_1} + {u_n}} \right)\) với \(2{S_n}\)
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = \frac{1}{3}\,\,v\`a \,\,{u_1} + {u_2} + {u_3} = - 1\)
a) Tìm công sai d và viết công thức của số hạng tổng quát \({u_n}\)
b) Số \( - 67\) là số hạng thứ mấy của cấp số cộng trên?
c) Số 7 có phải là một số hạng của cấp số cộng trên không?
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\), công sai d
a) Viết năm số hạng đầu của cấp số cộng theo \({u_1}\) và \(d\)
b) Dự đoán công thức tính \({u_n}\) theo \({u_1}\) và \(d\)
Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số cộng? Nếu là cấp số cộng, hãy tìm số hạng đầu \({u_1}\) và công sai d.
a) \({u_n} = 3 - 2n\)
b) \({u_n} = \frac{{3n + 7}}{5}\)
c) \({u_n} = {3^n}\)
Trong các dãy số \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = - 3\), công sai d = 5
a) Viết công thức của số hạng tổng quát \({u_n}\)
b) Số 492 là số hạng thứ mấy của cấp số cộng trên?
c) Số 300 có là số hạng nào của cấp số cộng trên không?
Cho (un) là cấp số cộng \({u_1}\; = {\rm{ }}-{\rm{ }}7,{\rm{ }}{u_2}\; = {\rm{ }}-{\rm{ }}2.\) Viết năm số hạng đầu của cấp số cộng đó.
Cho dãy số (un) với \({u_n} = - 5n + 7(n \ge 1).\)Dãy (\({u_n}\)) có là cấp số cộng không? Vì sao?
Tính tổng 100 số hạng đầu của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 0,3n + 5\) với mọi \(n \ge 1\)
Tính tổng n số hạng đầu của mỗi cấp số cộng sau:
a) 3; 1; – 1; ... với n = 10;
b) 1,2; 1,7; 2,2; ... với n = 15.