a) Ta có:
\(\left. \begin{array}{l}{u_1} + {u_n} = {u_1} + {u_1} + \left( {n - 1} \right)d = 2{u_1} + \left( {n - 1} \right)d\\{u_2} + {u_{n - 1}} = {u_1} + d + \left( {n - 2} \right)d = {u_1} + \left( {n - 1} \right)d\\{u_n} + {u_1} = {u_1} + {u_1} + \left( {n - 1} \right)d = 2{u_1} + \left( {n - 1} \right)d\end{array} \right\} \Rightarrow {u_1} + {u_n} = {u_2} + {u_{n - 1}} = ... = {u_n} + {u_1}\)
b) Dựa vào công thức vừa chứng minh ta có: \(n\left( {{u_1} + {u_n}} \right)\) = \(2{S_n}\)