Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DũNG...!╰‿╯
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2022 lúc 21:28

a: \(AC=\sqrt{AB^2+BC^2}=2\sqrt{13}\left(cm\right)\)

\(C=AB+BC+AC=10+2\sqrt{13}\left(cm\right)\)

Phía sau một cô gái
16 tháng 3 2022 lúc 21:32

Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:

\(AC=\sqrt{4^2+6^2}=\sqrt{52}=2\sqrt{13}\)

Chu vi tam giác ABC là:

\(4+6+2\sqrt{13}=10+2\sqrt{13}\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 22:17

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

Edogawa Conan
1 tháng 7 2021 lúc 22:22

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

Edogawa Conan
1 tháng 7 2021 lúc 22:28

b)Ta có:AB2=BC.BH

  \(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{7,5}=4,8\) (cm)

Ta có:BH+CH=BC

     =>CH=BC-BH=7,5-4,8=2,7 (cm)

 

Linh Đan
Xem chi tiết
Minh Hồng
5 tháng 5 2022 lúc 16:56

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)

b) Do \(AD=AB\) nên \(CA\) là trung tuyến 

Mà \(AC\cap BK=E\) với \(BK\) là trung tuyến

\(\Rightarrow E\) là trọng tâm \(\Delta BCD\)

\(\Rightarrow CE=\dfrac{2}{3}AC=\dfrac{2}{3}.6=4\left(cm\right)\Rightarrow AE=2\left(cm\right)\)

c) Ta có \(CA\) vừa là trung tuyến vừa là đường cao \(\Delta BCD\)

\(\Rightarrow\Delta BCD\) cân tại \(C\Rightarrow CB=CD\)

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2023 lúc 8:59

a: AB=BC*cos60=6*1/2=3cm

AC=căn 6^2-3^2=3*căn 3\(\simeq5.2\left(cm\right)\)

b: HB=AB^2/BC=1,5cm

HC=6-1,5=4,5cm

Võ Việt Hoàng
24 tháng 7 2023 lúc 9:39

c) Tam giác BCD, có: BC=BD=> Tam giác BCD cân tại B=>BDC=BCD

Mặt khác: BDC+BCD=ABC=60 độ (tính chất góc ngoài của tam giác)

=>BDC=BCD=30 độ

Tam giác ABC vuông tại A, có: ABC+ACB=90 độ

=>ACB=90 độ-ABC=90 độ-60 độ=30 độ

=>ACD= DCB+BCA=30 độ+30 độ= 60 độ

Xét 2 tam giác ABC và ACD,có:

ABC=ACD=60 độ

ACB=ADC=30 độ 

=> tam giác ABC đồng dạng tam giác ACD (g-g)

=>\(\dfrac{AB}{BC}=\dfrac{AC}{CD}\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}\) (vì BD=BC)

Nguyễn Tuấn Anh
24 tháng 7 2023 lúc 9:44

Trần Minh Thư
Xem chi tiết
JEsusDownstair
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2021 lúc 23:24

b: Xét ΔABC vuông tại B có 

\(BA^2+BC^2=AC^2\)

hay \(BC=3\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại B có BE là đường cao ứng với cạnh huyền AC

nên \(\left\{{}\begin{matrix}BA^2=AE\cdot AC\\BC^2=CE\cdot CA\\BE\cdot AC=BA\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=1.5\left(cm\right)\\CE=4.5\left(cm\right)\\BE=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)

Thao Nguyen
Xem chi tiết
Hằng Vu
Xem chi tiết
Nguyễn Ngọc Huy Toàn
6 tháng 3 2022 lúc 13:17

Sửa đề: Tam giác ABC vuông tại A. Câu c. C/m IB.AD=IC.AE

a.

Ta có:

\(\dfrac{AE}{AB}=\dfrac{6}{15}=\dfrac{2}{5};\dfrac{AD}{AC}=\dfrac{8}{20}=\dfrac{2}{5}\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét tam giác ABC và tam giác AED,có:

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) ( cmt )

\(\widehat{A}:chung\)

Vậy tam giác ABC dồng dạng tam giác AED ( c.g.c )

b. 

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{15^2+20^2}=\sqrt{625}=25cm\)

Ta có: tam giác ABC dồng dạng tam giác AED ( c.g.c )

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{DE}{BC}\)

\(\Leftrightarrow\dfrac{2}{5}=\dfrac{DE}{25}\) 

\(\Leftrightarrow5DE=50\)

\(\Leftrightarrow DE=10cm\)

c.Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{IB}{IC}\)

Mà \(\dfrac{AB}{AC}=\dfrac{AE}{AD}\) ( 2 tam giác đồng dạng )

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{IB}{IC}\)

\(\Leftrightarrow IB.AD=IC.AE\)

Nguyễn Huy Tú
6 tháng 3 2022 lúc 13:18

bạn kiểm tra lại đề nhé 

 

Vĩnh Khang Bùi
Xem chi tiết