Cho \(\Delta ABC\)có \(\widehat{B}=80^o;\widehat{C}=40^o.\)Tia phân giác của \(\widehat{ACB}\)và tia phân giác của góc ngoài ABx cắt nhau ở I
Chứng Minh: \(\widehat{BAC}=2\widehat{BIC}\)
Cho \(\Delta ABC\) cân tại B , có \(\widehat{ABC}=80^o\) . Lấy điểm I nằm trong tam giác sao cho \(\widehat{IAC}=10^o\) và \(\widehat{ICA}=30^o\) . Tính số đo \(\widehat{AIB}\) .
Do ΔABC cân tại B => A = C = \(\dfrac{180^o-80^o}{2}=50^o\)
=> góc BAI = 50o - 10o = 40o
góc BCI = 50o - 30o = 20o
=> \(IBC=\dfrac{1}{3}ABI\Rightarrow IBC=\dfrac{80^o}{3+1}=20^o;ABI=80^o-20^o=60^o\)
\(\Leftrightarrow AIB=180^o-40^o-60^o=80^o\)
Cho ΔABC ∽ ΔDEF. Biết \(\widehat A = {60^o};\widehat E = {80^o}\), hãy tính số đo các góc \(\widehat B,\widehat C,\widehat D,\widehat E\)
Vì ΔABC ∽ ΔDEF \( \Rightarrow \widehat A = \widehat D{,^{}}\widehat B = \widehat E{,^{}}\widehat C = \widehat F\)
Mà \(\widehat A = {60^o} \Rightarrow \widehat D = {60^o}\)
\(\widehat E = {80^o} \Rightarrow \widehat B = {80^o}\)
Có \(\widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat C = \widehat F = {180^o} - {60^o} - {80^o} = {40^o}\)
cho ΔABC cân tại A có \(\widehat{A}=80^o\). Gọi O là một điểm ở trong tam giác sao cho \(\widehat{OBC}=30^o\) , \(\widehat{OCB}=10^o\). CM: ΔCOA cân
cho ΔABC cân tại B, có \(\widehat{ABC}=80^o\). Lấy điểm I nằm trong tam giác sao cho \(\widehat{IAC}=10^o\) và \(\widehat{ICA}=30^o\). Tính số đo \(\widehat{AIB}\)
Hình bn tự vẽ nhé !
do ΔABC cân tại A ⇒ góc ABC =góc ACB
⇒góc ACB =800 ( vì góc ABC = 800 )
ta có : góc BAC = 1800 - ( ABC + ACB )
⇒ BAC =1800 - ( 800 + 800 )
⇒BAC =1800 - 1600
⇒BAC =200
lại có : BAI + CAI =BAC = 200
hay BAI + 100 =200
⇒ BAI = 100
⇒BAI =CAI (=100)
xét ΔABI và ΔACI có :
AB =AC ( ΔABC cân tại A )
BAI =CAI ( CM trên )
AI : chung
⇒ ΔABI = ΔACI ( c.g.c )
⇒ AIB = AIC (cặp góc tương ứng )
Xét ΔAIC ta có :
IAC +ACI +CIA = 1800 (tính chất tổng 3 góc của Δ )
hay 100 + 300 +CIA =1800
⇒CIA =1400
mà CIA = BIA ( CM trên )
⇒BIA = 1400
Vậy góc BIA =1400
Chúc bn hk tốt !
Cho \(\Delta ABC\) có góc A= 80o. Lấy điểm O nằm trong \(\Delta ABC\)sao cho \(\widehat{OBC}=30^O;\widehat{OCB}=10^O\).Chứng minh \(\Delta OCA\)cân.( sử dụng phương pháp vẽ thêm hình bằng tam giác đều nha các bạn) ai trả lời nhanh và đúng mihf tick
Cho \(\Delta ABC\) có ba góc nhọn nội tiếp đường tròn (O;R), AD là đường cao của \(\Delta ABC\) và AM là đường kính của đường tròn tâm O, gọi E là hình chiếu của B trên AM.
a) CM: \(\widehat{ACM}=90^o\) và \(\widehat{BAD}=\widehat{MAC}\)
b) CM: Tứ giác ABDE nội tiếp
c) CM: DE//BC
a: góc ACM=1/2*sđ cung AM=90 độ
góc BAD+góc ABD=90 độ
góc MAC+góc AMC=90 độ
mà góc ABD=góc AMC
nên góc BAD=góc MAC
b: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
Hai \(\Delta\)\(ABC\) và \(\Delta MNP\) có \(MP = AC, ABC = MNP = 90^o\). Điều kiện để \(\Delta ABC = \Delta MNP\) là:
A. BA = NP
B. \(\widehat{BAC} = \widehat{NMP}\)
C. BC = MN
D. Cả A, B, C
Cho \(\Delta ABC = \Delta DEF\). Biết rằng \(\widehat A = {60^\circ },\hat E = {80^\circ }\), tính số đo các góc B, C, D, F.
Do \(\Delta ABC = \Delta DEF\) nên \(\widehat B = \widehat E = {80^o}\); \(\widehat D = \widehat A = {60^o}\); \(\widehat C = \widehat F\) ( các góc tương ứng)
Xét tam giác ABC có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 60^\circ + 80^\circ + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ - 60^\circ - 80^\circ = 40^\circ \end{array}\)
Do đó \(\widehat F = 40^\circ \)
Vậy \(\widehat B = {80^o}; \widehat D ={60^o}; \widehat C = \widehat F= 40^\circ \).
Bài 1:
a) \(\Delta ABC\) có \(\widehat{A}\)= 100o ; \(\widehat{B}\) - \(\widehat{C}\) = 50o. Tính \(\widehat{B}\), \(\widehat{C}\)
b) \(\Delta ABC\) có \(\widehat{B}\) = 80o và \(3.\widehat{A}\) = \(2.\widehat{C}\) . Tính \(\widehat{A}\), \(\widehat{C}\)
giúp với mai mk phải kt rồi
a) ΔABC có:
\(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = 180o hay 100o + \(\widehat{B}\) + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{B}\) + \(\widehat{C}\) = 180o - 100o = 80o
Ta có: \(\widehat{B}\) + \(\widehat{C}\) = 80o(cm trên) ; \(\widehat{B}\) - \(\widehat{C}\) = 50o (gt)
\(\Rightarrow\) \(\widehat{B}\) = (80o + 50o ) : 2 = 65o
\(\widehat{C}\) = (80o - 50o) : 2 = 15o
b) ΔABC có:
\(\widehat{B}\) + \(\widehat{A}\) + \(\widehat{C}\) = 180o hay 80o + \(\widehat{A}\) + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{A}\) + \(\widehat{C}\) = 180o - 80o = 100o
Ta có: 3 . \(\widehat{A}\) = 2 . \(\widehat{C}\) => \(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\) = \(\frac{\widehat{A}+\widehat{C}}{2+3}\) = \(\frac{100}{5}\) = 20
\(\Rightarrow\) \(\begin{cases}\widehat{A}=40^o\\\widehat{C}=60^o\end{cases}\)