Cho tam giác ABC có \(\widehat{B}\) = 90◦ và \(\widehat{A}=\widehat{C}\) . Hai tia phân giác AD và CE lần lượt của các góc \(\widehat{BAC},\widehat{ACB}\) cắt nhau tại I. Chứng minh rằng ID = IE.
Cho tam giác ABC . Tia phân giác của \(\widehat{B}\)cắt tia phân giác của \(\widehat{C}\)tại I và cắt đường phân giác của góc ngoài tại \(\widehat{C}\)ở K. Tính \(\widehat{BIC}\)và \(\widehat{BKC}\)biết rằng \(\widehat{A}=70^o\)
Bài 1:Cho \(\Delta\)GKH = 70o,\(\widehat{GHK}\)=400.KE là tia phân giác của \(\widehat{GKH}\)x\(\widehat{GEK}\)=?
Bài 2 : \(\Delta ABC\)vuông ở B, số đo góc A = 400.Tia phân giác của\(\widehat{C}\) cắt AB tại D.Tính số đo \(\widehat{CDB}\)
Bài 3 :Cho\(\Delta\)ABC có số đo góc A = 800, \(\widehat{B}\)=\(\widehat{3C}\) thì số đo góc B là?
bÀI 4 :\(\Delta\)ABC có \(\widehat{A}\)=400.Các tia phân giác của \(\widehat{B}\)Và \(\widehat{C}\)Cắt nhau ở I.\(\widehat{BIC}\)Bằng???
Giải nhanh có quà
Cho\(\Delta ABC\)có \(\widehat{A}=a^o\left(0< a< 90^o\right)\). Các phân giác BD, CE cắt nhau tại O. Tia phân giác góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác góc ngoài tại đỉnh C cắt BO tại N.
a) Tính số đo\(\widehat{BOC}\)
b) Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c) Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
Cho tam giác ABC. Các tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)cắt nhau tại I. Các tia phân giác của góc ngoài tại đỉnh B và C cắt nhau tại K. Chứng minh rằng :
a, \(\widehat{BIC}\)= \(90^o\)\(+\frac{\widehat{A}}{2}\)
b, \(\widehat{BKC}\)= \(90^o\)\(-\frac{\widehat{A}}{2}\)
Cho tam giác \(\Delta ABC\)có \(\widehat{A}=80^o\) , tia phân giác \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại I
a) Tính \(\widehat{BIC}\)
b) Gọi giao điểm của tia BI với cạnh AC là M. So sánh các góc \(\widehat{BIC}\) , \(\widehat{BMC}\) và \(\widehat{BAC}\)
Cho tam giác ABC, O là 1 điểm nằm trong tam giác.
a)Chứng minh: \(\widehat{BOC}=\widehat{BAC}+\widehat{ABO}+\widehat{ACO}\)
b)Biết \(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{BAC}}{2}\) và tia BO là tia phân giác của \(\widehat{ABC}\)
Chứng minh: Tia CO là tia phân giác của \(\widehat{ACB}\)
cho \(\Delta ABC\)có \(\widehat{A=90^o}\)\(\left(0< a< 90^o\right)\). Các phân giác BD, CE cắt nhau tại O. Tia phân giác góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác góc ngoài tại đỉnh C cắt tia BO tại N.
a) Tính số đo \(\widehat{BOC}\)
b) Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
cho \(\Delta ABC\)trên tia đối của AB lấy , từ D kẻ đường thẳng BC cắt tia đối của AC tại E . Hai tia phân giác của hai góc \(\widehat{ADE},\widehat{ABC}\)cắt nhau tại O . Chứng minh rằng \(\widehat{BOE}=\frac{1}{2}\widehat{ABC}+\widehat{ACB}\)