\(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{1}{2}\)
giải pt
giải pt sau
a)\(\dfrac{60}{x}=\dfrac{4}{3}+\dfrac{60-x}{x+4}\)
b)\(\dfrac{100}{x}-\dfrac{100}{x+20}=\dfrac{5}{6}\)
c)\(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
Helppppp
b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)
=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)
=>x*(x+20)=400*6=2400
=>x^2+20x-2400=0
=>(x+60)(x-40)=0
=>x=-60 hoặc x=40
c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1(nhận)
Giải pt:
\(\dfrac{100}{x+20}\)-\(\dfrac{100}{x}\)=\(\dfrac{5}{12}\)
=) đây là bài giải bằng cách lập pt mà nãy bạn đã đăng nè:v mà giải thì ra vô nghiệm á bạn nên mik ko có làm:v
\(\dfrac{4800}{x}-\dfrac{4800}{x+100}=8\)
giải pt
ĐK: ` x\ne 0; x \ne -100`
`4800/x-4800/(x+100)=8`
`<=>1/x-1/(x+100) =1/600`
`<=> (x+100-x)/(x(x+100) = 1/600`
`<=> 100/(x(x+100))=1/600`
`<=> x^2+100x = 60000`
\(\left[{}\begin{matrix}x=200\\x=-300\end{matrix}\right.\)
Vậy...
`4800/x-4800/(x+10)=8`
`ĐK:x ne 0,x ne -10`
`pt<=>600/x-600/(x+10)=1`
`<=>(600x+6000-600x)/(x^2+10x)=1`
`<=>6000/(x^2+10x)=1`
`<=>x^2+10x=6000`
`<=>x^2+10x-6000=0`
`Delta'=25+6000=6025`
`<=>x_1=20,x_2=-30`
Giải các phương trình:
a) \(\dfrac{x+2001}{5}+\dfrac{x+1999}{7}+\dfrac{x+1997}{9}+\dfrac{x+1995}{11}=-4;\)
b) \(\dfrac{x-15}{100}+\dfrac{x-10}{105}+\dfrac{x-100}{110}=\dfrac{x-100}{15}+\dfrac{x-105}{10}+\dfrac{x-110}{5}.\)
a: \(\Leftrightarrow\left(\dfrac{x+2001}{5}+1\right)+\left(\dfrac{x+1999}{7}+1\right)+\left(\dfrac{x+1997}{9}+1\right)+\left(\dfrac{x+1995}{11}+1\right)=0\)
=>x+2006=0
=>x=-2006
b: \(\Leftrightarrow\left(\dfrac{x-15}{100}-1\right)+\left(\dfrac{x-10}{105}-1\right)+\left(\dfrac{x-100}{5}-1\right)=\left(\dfrac{x-100}{15}-1\right)+\left(\dfrac{x-105}{10}-1\right)+\left(\dfrac{x-110}{5}-1\right)\)
=>x-105=0
=>x=105
1) giải pt :
a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
2) giải pt :
a) \(\left(5x+1\right)^2=\left(3x-2\right)^2\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
d) \(x^4-3x^3+4x^2-3x+1=0\)
1)
\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)
\(\Leftrightarrow x=105\)
b)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow50-x=0\)
\(\Leftrightarrow x=50\)
2)
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)
\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)
\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)
\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
c. \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
Đặt: \(y=x+4\), ta có:
\(\left(y-1\right)^4+\left(y+1\right)^4=2\)
\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=2\)
\(\Leftrightarrow2y^4+12y^2=0\)
\(\Leftrightarrow2y^2\left(y^2+6\right)=0\)
\(\Leftrightarrow y=0\)
\(\Leftrightarrow x=-4\)
d) \(x^4-3x^3+4x^2-3x+1=0\)
\(\Leftrightarrow x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
\(\Leftrightarrow x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=1\)
Giải phương trình
\(\dfrac{100}{x}\)-\(\dfrac{100}{x+10}\)=\(\dfrac{30}{60}\)
\(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{30}{60}=0,5\left(ĐKXĐ:x\ne0;x\ne-10\right)\\ \Leftrightarrow\dfrac{100\left(x+10\right)-100x}{x\left(x+10\right)}=\dfrac{0,5x\left(x+10\right)}{x\left(x+10\right)}\\ \Leftrightarrow100x-100x+1000=0,5x^2+5x\\ \Leftrightarrow0,5x^2+5x-1000=0\\ \Leftrightarrow0,5x^2-20x+25x-1000=0\\ \Leftrightarrow0,5x.\left(x-40\right)+25.\left(x-40\right)=0\\ \Leftrightarrow\left(0,5x+25\right)\left(x-40\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}0,5x+25=0\\x-40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-50\\x=40\end{matrix}\right.\\ Vậy:S=\left\{-50;40\right\}\)
Giải các bất phương trình sau:
a) \(\dfrac{x-2}{1007}+\dfrac{x-1}{1008}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\)
b) \(\dfrac{3-x}{100}+\dfrac{4-x}{101}>\dfrac{10-2x}{204}+\dfrac{12-2x}{206}\)
a: =>\(\dfrac{2x-4}{2014}+\dfrac{2x-2}{2016}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\)
=>\(\dfrac{2x-2018}{2014}+\dfrac{2x-2018}{2016}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\)
=>2x-2018<0
=>x<2019
b: \(\Leftrightarrow\left(\dfrac{3-x}{100}+\dfrac{4-x}{101}\right)>\dfrac{5-x}{102}+\dfrac{6-x}{103}\)
=>\(\dfrac{x-3}{100}+\dfrac{x-4}{101}-\dfrac{x-5}{102}-\dfrac{x-6}{103}< 0\)
=>\(x+97< 0\)
=>x<-97
giải phương trình ; \(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10
\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10
⇔\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)
⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000
⇔ 7975\(x\) = 1196250
⇔ \(x\) = \(\dfrac{1196250}{7975}\)
⇔\(x \) = 150
Giải pt
\(1+\dfrac{2}{x-2}=\dfrac{10}{x+3}-\dfrac{50}{\left(2-x\right)\left(x+3\right)}\)
\(\dfrac{x^2-3x+5}{x^2-4}=-1\)
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)