CMR: nếu\(\left(a,b\right)=1\)thì \(\left(a^2,a+b\right)=1\)
CMR nếu \(\left(a^2-bc\right).\left(b-abc\right)=\left(b^2-ac\right).\left(a-abc\right)\) và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
\(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ca\right)\left(a-abc\right)\)
\(\Leftrightarrow a^2b+ab^2c^2-a^3bc-b^2c=b^2a+a^2bc^2-ca^2-ab^3c\)
\(\Leftrightarrow a^2b-ab^2-b^2c+ca^2=a^2bc^2-ab^3c+a^3bc-ab^2c^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=abc\left(a-b\right)\left(a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)
CMR nếu a-b=1 thì
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)........\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\)
Từ đầu bài
=> 1.\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\) \(+...+\left(a^{32}+b^{32}\right)\)= \(a^{64}-b^{64}\)
=> \(\left(a-b\right)\left(a+b\right)+...+\left(a^{32}+b^{32}\right)\)= \(a^{64}+b^{64}\)
=> \(\left(a^2-b^2\right)\left(a^2+b^2\right)+...+\left(a^{32}+b^{32}\right)\)= a^64 + b^64
tương tự sẽ ra kết quả cuối là \(\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\left(đpcm\right)\)
CMR nếu a-b=1 thì:\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+a^{32}\right)=a^{64}-b^{64}\)
ta có \(a^2-b^2=\left(a+b\right)\left(a-b\right)\) => \(\frac{a^2-b^2}{a-b}=a+b\)
\(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)\)=> \(\frac{a^4-b^4}{a^2-b^2}=a^2+b^2\)
\(a^8-b^8=\left(a^4-b^4\right)\left(a^4+b^4\right)\) => \(\frac{a^8-b^8}{a^4-b^4}=a^4+b^4\)
...............................................................................................
\(a^{64}-b^{64}=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\) => \(\frac{a^{64}-b^{64}}{a^{32}-b^{32}}=a^{32}+b^{32}\)
thay vào ta được
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)......\left(a^{32}+b^{32}\right)\)
\(=\frac{a^2-b^2}{a-b}.\frac{a^4-b^4}{a^2-b^2}.\frac{a^8-b^8}{a^4-b^4}.............\frac{a ^{64}-b^{64}}{a^{32}-b^{32}}\)
\(=\frac{a^{64}-b^{64}}{a-b}\)
mà a-b= 1 nên \(\frac{a^{64}-b^{64}}{a-b}=a^{64}-b^{64}\)
Bài 1: Cho a,b,c đôi một khác nhau. CMR:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)=1
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
1)Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n là bội của 24
2) CMR nếu:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\left(1\right)\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(c^2+a^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
3) Cho độ dài ba cạnh a,b,c của một tam giác. CMR:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+3\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)
1) Đặt n+1 = k^2
2n + 1 = m^2
Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ
Đặt m = 2t+1
=> 2n+1 = m^2 = (2t+1)^2
=> 2n+1 = 41^2 + 4t + 1
=> n = 2t(t+1)
=> n là số chẵn
=> n+1 là số lẻ
=> k lẻ
+) Vì k^2 = n+1
=> n = (k-1)(k+1)
Vì k -1 và k+1 là 2 số chẵn liên tiếp
=> (k+1)(k-1) chia hết cho *
=> n chia hết cho 8
+) k^2 + m^2 = 3a + 2
=> k^2 và m^2 chia 3 dư 1
=> m^2 - k^2 chia hết cho 3
m^2 - k^2 = a
=> a chia hết cho 3
Mà 3 và 8 là 2 số nguyên tố cùng nhau
=> a chia hết cho 24
CMR Nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) \(thì (a+b)\)\(\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\)
CMR nếu a+b>=0 thì
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^3+b^3\right)>=4\left(a^6+b^6\right)\)
CMR \(A-B=\left|A-B\right|.k\)với \(\left|k\right|=1\)
Áp dụng CMR nếu \(\sqrt{\left(x-y\right)^2}=\sqrt{\left(y-z\right)^2}=\sqrt{\left(z-x\right)^2}\)thì \(x=y=z\)
CMR :nếu (a,b)=1 thì \(\left(a^2,a+b\right)\)=1
Giả sử a2 và a + b là 2 số không nguyên tố cùng nhau
Gọi d là ước nguyên tố chung của a2 và a + b
\(\Rightarrow\begin{cases}a^2⋮d\\a+b⋮d\end{cases}\). Mà d nguyên tố \(\Rightarrow\begin{cases}a⋮d\\a+b⋮d\end{cases}\)\(\Rightarrow\begin{cases}a⋮d\\b⋮d\end{cases}\), trái với giả thiết (a;b)=1
=> điều giả sử là sai
=> đcpm